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Abstract

Axially symmetric perturbations of the isotropic harmonic oscillator in three dimensions are
studied. A normal form transformation introduces a second symmetry, after truncation. The reduc-
tion of the two symmetries leads to a one-degree-of-freedom system. To this end we use a special
set of action–angle variables, as well as conveniently chosen generators of the ring of invariant
functions. Both approaches are compared and their advantages and disadvantages are pointed out.
The reduced flow of the normal form yields information on the original system.

We analyse the 2-parameter family of (arbitrary) axially symmetric cubic potentials. This family
has rich dynamics, displaying all local bifurcations of co-dimension one. With the exception of
six ratios of the parameter values, the dynamical behaviour close to the origin turns out to be
completely determined by the normal form of order 1. We also lay the ground for a further study at
the exceptional ratios. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the few methods that are available to study Hamiltonian systems is to find an
integrable system that is close to it and to consider the former as a perturbation of the latter.
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In case the integrable system is non-degenerate, the flow of this system makes the phase
space aramified torus bundle. For instance, in three degrees of freedom the regular fibres
of this bundle form 3-parameter families of invariant 3-tori, while 2-parameter families
of invariant 2-tori, 1-parameter families of periodic orbits and isolated equilibria give rise
to singular fibres. A perturbation of such a non-degenerate integrable system allows an
immediate application of KAM-theory, cf. [6] and references therein. While resonant tori
break up, most invariant tori survive the perturbation and are only slightly deformed. These
are parametrised by large Cantor sets which are defined by Diophantine conditions on the
frequencies.

Less can be said about perturbations of properly degenerate orsuperintegrablesystems.
In case that the perturbation “removes the degeneracy”, KAM-theory is adapted in [3] to
show that a measure-theoretically large part of the phase space becomes filled by maximal
tori. Opposite to the non-degenerate case, where the geometry of the Cantor fibration into
maximal tori is imposed by the unperturbed integrable system, the distribution of invariant
tori in the perturbation of a superintegrable system is induced by the perturbation itself.
If the integrable system isminimally superintegrable, having(n + 1)-parameter families
of invariant(n − 1)-tori, a generic perturbation automatically “removes the degeneracy”
and the surviving(n − 1)-tori determine how the Cantor families of invariantn-torus are
distributed in phase space, cf. [29,30,41].

For maximallysuperintegrable systems, like the Kepler system or the isotropic har-
monic oscillator, it is more the exception than the rule that the perturbation “removes the
degeneracy”. However, systems perturbed from these are very important in applications. In
fact, the more degenerate an integrable system is, the more non-integrable systems can be
considered as a perturbation of that system. Taken to the extreme, every Hamilton function
is a perturbation of the zero function (after an appropriate scaling of time).

It is a well-known phenomenon that Hamiltonian systems behave “more integrably”
in the neighbourhood of their (elliptic) equilibria. In fact, after a scaling, the system can
be considered as a perturbation of the linearisation at the equilibrium, an integrable sys-
tem. In many cases it is possible to find another integrable approximation that is non-
degenerate.

For instance, if there are no resonances of order≤4 among the (normal) frequencies of
the equilibrium, then the Birkhoff polynomial of degree 4 (in the original variables) will do,
see [4]. The case of a single resonance of order 3 or 4 is studied in [37]. Here the Birkhoff
normalising transformation leads to a normal form “with a resonance term” that defines
again a non-degenerate integrable approximation.

In [28] frequency ratios of the form 1–2–k are considered, withk = 2 or k ≥ 5, and
also withk = 1,3,4 if the system has an appropriate discrete symmetry. In these cases the
cubic normal form is integrable. The non-integrability of any normal form (other than the
crude linear approximation) is proven in [17] for the 1–1–2 resonance, and in [35] a large
step is made towards the same result for the 1–2–3 resonance.

The cubic terms in the normal form of the 1–1–1 resonance are zero, and the same holds
true for the 1–1–3 resonance. This makes them “genuinely second-order resonances” (see
[52] for the precise definition and a survey on genuinely first and second-order resonances).
In fact, among the genuinely second-order resonances the 1–1–1 and the 1–1–3 are the most
complicated: the normal form of order 4 contains, respectively, six and five terms.
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These resonances have been used to model the motion in the central region of a galaxy
(within a few core radii), cf. [51,55,59–61]. Both triaxial models and axially symmetric
galaxies are under consideration. Most galaxies do not show a violent activity; more the
contrary, they are supposed to exhibit a stationary behaviour. As a consequence of the
observations made during the last two decades, astronomers conclude that many galactic
components are neither spherical nor do they possess an axial symmetry, but they are
triaxial objects, indeed. There is also an evidence of the triaxial structure of many galaxy
bulges. Even barred galaxies evolve towards non-symmetric objects. Thus, the study of
the dynamics of triaxial galaxies is a very interesting subject of research. Specifically,
de Zeeuw and Merritt [62] suggest that most triaxial potentials are probably describable
as Hamiltonian systems in 1–1–1 resonance. This fact has important implications for the
existence of equilibrium triaxial galaxies. In other words, the analysis of the periodic orbits
obtained as the equilibria of the reduced normalised system and their possible bifurcations
is crucial to understand the behaviour of the galaxy.

This situation is similar in other fields of physics, such as molecular dynamics. Three-
dimensional models based on perturbations of harmonic oscillators are adopted to describe
the motion of the nuclei in a small molecule. Indeed, small-amplitude vibrations in molecules
follow an oscillatory law, as their spectra and their reactions show, cf. [27].

We concentrate on the 1–1–1 resonance, and in this paper we assume the system to be
axially symmetric, i.e. invariant under rotation about the vertical axis. In future work we
hope to use the information we gain in this particular setting to attack the situation when
the axial symmetry is broken, see also [24]. The axial symmetry immediately implies that
the third componentN := x1p2 − x2p1 of the angular momentum is an integral of motion.
Furthermore, the periodic flow of the isotropic harmonic oscillatorH0 is used to putHε

into normal form. As a consequence of the normalisation process,H0 becomes a so-called
“formal integral” of the normal form series. After truncation of the higher order terms, the
normal formH̄ε of order 2 defines an integrable approximation ofHε (with integralsN and
H0).

Two methods have been proposed to deal with this kind of problems. In [20], following
Deprit [15], the nodal-Lissajous variables(�, g, ν, L,G,N) have been introduced (see also
[21–23]). These are action–angle variables of the isotropic harmonic oscillator (in three
degrees of freedom) that are particularly well adapted to the periodicity of the flow, in the
same way as the Delaunay variables are for the Kepler problem. Borrowing some of the
terminology of celestial mechanics, the fast variable� is called theelliptic anomalyand
varies for the isotropic harmonic oscillatorH0 = ωL as�(t) = ωt + �0. Moreover, asN
and the modulusG of the angular momentumx×p are among the conjugate momenta, the
effects of the perturbations on the unperturbed ellipses are rendered very intuitive in these
variables. For instance,ν is a “slow” angle that measures the value of theascending node
of the orbital plane. In particular, the nodal-Lissajous variables allow to reduce the normal
form H̄ε to a one-degree-of-freedom problem sinceν and� are ignorable (cyclic) variables.
The remaining variablesg andG are co-ordinates of the (twice) reduced phase space, while
N andL act asdistinguishedparameters.

Using singular reduction, in [12] the 2-torus symmetry is reduced by a set of generators
τ1, τ2, τ3, τ4 of the ring of (smooth) invariant functions. For fixed values ofN = (1/2ω)τ4
andL = (1/2ω)(τ2 + τ3) this yields again a one-degree-of-freedom problem. For more
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details see Section 2, where this reduction is detailed in two steps. Yanguas [58] performs
the reductions in the opposite order. First, the invariants defined by the oscillator symmetry
are used to express the normal form of an isotropic oscillator perturbed with arbitrary
cubic terms (10 parameters, see also [24]). Then, the invariantsτ1, τ2, τ3, τ4 are deduced
as functions of the invariants of the oscillator symmetry. The twice reduced system is the
same as the one obtained by using the procedure of [12]. As the perturbations considered in
the present paper are axially symmetric themselves, it leads to sharper results to first reduce
the axial symmetry and then perform the perturbation analysis in two degrees of freedom,
and we will here exclusively consider the reductions in this order. However, we stress that
for the non-symmetric 1–1–1 resonance the approach of [24,58] becomes crucial. See also
the discussion of the Hamiltonian Hopf bifurcation in Section 4.5.

One of the goals of the present paper is to clarify the relation between the nodal-Lissajous
variables and the singular reduction. We evaluate also the advantages and disadvantages of
both approaches to symmetry reduction.

The Hamilton functionHε we treat in this paper is a perturbation of the isotropic harmonic
oscillatorH0 by a cubic potential. Because of the axial symmetry the most general expression
is

Hε(x, p) = 1
2(p|p) + 1

2ω
2(x|x) + ε(1

3αx
3
3 + β(x2

1 + x2
2)x3), (1)

where(·|·) denotes the standard inner product. This defines a whole family of Hamiltonian
systems. Let us discuss the role of the various parameters that occur. The frequencyω has
physical dimensions time−1 and is the least important parameter; one of the reasons why
we do not scale time to putω = 1 is thatω helps to distinguish between the energyH0
and the momentumL. The dimensionless parameterε expresses that we consider the cubic
perturbation to be small. In factε can always be introduced by a scalingx �→ εx, p �→ εp,
H �→ ε2H and the form (1) of our Hamilton function then describes the dynamics close to
the origin.

The parametersα andβ are external parameters, the perturbing force field depends upon.
Both have physical dimension length−1 time−2. They are of order 1, e.g.α2 + β2 = 1. It is
important to make a clear distinction between the external parameters and the (internal or)
distinguished parametersN andL. When dealing with the family of one-degree-of-freedom
systems defined bȳHε, one has to be careful about the type of transformation in parameter
space one allows to make sure that the transformedN , L can still be interpreted as phase
space variables.

In caseβ = 0 the system defined by (1) separates into the planar isotropic harmonic
oscillator and a 1D cubic perturbation. Other parameter values whereHε is known to be
integrable areα = β andα = 6β (see [38] for a deduction of these choices to obtain
integrable systems using Painlevé’s criterion). Both correspond to axially symmetric 3D
versions of two integrable systems in the plane. The first case,α = β, is the extension of
the system studied by Aizawa and Saitô [2]. The potential withα = 6β is the extension of
the so-called Greene potential (see [19,50]). The casesβ = 0 andα = β lead to degenerate
normal formsH̄ε as we will discuss in Section 4.5.

In this paper we study those regions of external parameters where the family of one-degree-
of-freedom systems defined bȳHε (and parametrised by the distinguished parametersN

andL) is structurally stable. The cubic terms in the normal form of (1) vanish and the
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necessary second normalisation yields a quartic normal form. It turns out that there is only
one non-integrable case where a higher order normal form is needed, the 3D Hénon–Heiles
caseα = −β, cf. [33]. This case is dealt with in [21,22,58], which allows us to concentrate
here on the quartic normal form̄Hε.

Since it is necessary to perform a second normalisation, additional termsε2(γ1(x
2
1 +

x2
2)

2 + γ2(x
2
1 + x2

2)x
2
3 + γ3x

4
3) would become equally important; a generic study of an

axially symmetric Hamiltonian system in the neighbourhood of a 1–1–1 resonance thus
involves all 5 parametersα, β, γ1, γ2, γ3 (one of which is superfluous). Structural stability
implies that the results we obtain for (1) also hold in a whole neighbourhood of the(α, β)

plane in (α, β, γ1, γ2, γ3) space. We will complete the study of the various regions in
(α, β, γ1, γ2, γ3) space in a subsequent paper.

This paper is organised as follows. In Section 2 we treat the various symmetries that occur.
To this end we compare two approaches to the problem. The first leads to the construction of
the nodal-Lissajous variables while the second approach is singular reduction. Only those
properties that are needed in the sequel are stated, for a deeper study of the two approaches
in their own right the reader is referred to, respectively, [20] and [12]. We end with a
geometrical interpretation which explains the intimate relation between both results.

Section 3 contains the normalisation of the system (1). Again there are several approaches,
one using the nodal-Lissajous variables, one performing the computation directly in the
given co-ordinates and one using the invariants of the axial symmetry. We use all methods
to calculate the second-order normal form and compare their advantages and disadvantages.

The normal form is analysed in Section 4 where we study the resulting one-degree-of-
freedom problem. We obtain the (relative) equilibria and their bifurcations. In most cases the
latter are versally unfolded by the distinguished parametersN andL. We give the different
sectors of such structurally families within the(α, β)-space of external parameters.

Section 5 contains the perturbation analysis. First we reconstruct the dynamics of the
normal form in two degrees of freedom. The original system (1) is axially symmetric itself
and the perturbation analysis is carried out with this symmetry still reduced. Then the
behaviour of the whole system in three degrees of freedom is reconstructed.

2. Singular reduction and action–angle variables

We perturb the harmonic oscillator with three equal frequencies. Therefore, we first
recapitulate the main facts about this system. The presentation of these well-known results
also allows us to fix notation. The reader may find more details in [25,36,40].

The isotropic harmonic oscillatorin three degrees of freedom is the superposition of
three harmonic oscillators with the same frequencyω. The energy reads

H0(x, p) = 1
2(p|p) + 1

2ω
2(x|x)

and the resulting flow on the phase spaceT ∗
R

3 ∼= R3 × R3 is periodic. In particular, the
isotropic harmonic oscillator is a maximally superintegrable Hamiltonian system.

The invariance ofH0 under the groupSO(3) of rotations implies that the angular mo-
mentum vectorx × p is kept fixed by the flow. SinceH0 is even invariant under the larger
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groupU(3) of unitary complex 3× 3 matrices, there are more integrals of motion. They
form the tensor(pjpk +ω2xjxk)j,k=1,2,3 which can be thought of as a generalisation of the
Laplace or Runge–Lenz vector, see [34]. This tensor determines the ellipse in configuration
space along which the flow proceeds. Indeed, the angular momentum is an eigenvector with
eigenvalue 0, and the other two eigenvaluesωL±ω

√
L2 − G2 are related to the semi-major

and semi-minor axes of the ellipse. HereG = ‖x × p‖ denotes the modulus of the angular
momentum andωL stands for the energyH0.

2.1. The axial symmetry

The cubic perturbationsHε = H0 + ε(1
3αx

3
3 + β(x2

1 + x2
2)x3) of the isotropic harmonic

oscillator that we consider are invariant under the axialS1-action

� : S1 × T ∗
R

3 → T ∗
R

3,

(ν, (x, p)) �→ (expνx,expνp),

where expν stands for the rotation

exp




0 −ν 0

ν 0 0

0 0 0


 =




cosν − sinν 0

sinν cosν 0

0 0 1




about the third axis. From Noether’s theorem, or by direct verification, one concludes that
the third componentN = x1p2 − x2p1 of the angular momentum is an integral of motion.
We use this symmetry to simplify the analysis of the given (axially symmetric) Hamiltonian
system. In fact we compare two different ways to accomplish this goal.

To define the nodal-Lissajous variables we have to assume that the total angular momen-
tumG does not vanish. This allows us to choose the angular momentum vectorx × p as
third co-ordinate axis. In the new co-ordinates the motion in configuration space takes place
in the(x̃1, x̃2)-plane, in particular we haveG = x̃1p̃2− x̃2p̃1. The Whittaker transformation

W : {(x, p) ∈ T ∗
R

3||N | < G} → T ∗
R

2 × T ∗S1,

(x1, x2, x3, p1, p2, p3) �→ (x̃1, x̃2, p̃1, p̃2, ν,N)

suits our needs, see [56, Chapter 13, p. 343], and also [14]. Writing cosI = N/G, 0 <

I < π , we have

x1 = x̃1 cosν − x̃2 sinν cosI, x2 = x̃1 sinν + x̃2 cosν cosI, x3 = x̃2 sinI,

p1 = p̃1 cosν − p̃2 sinν cosI, p2 = p̃1 sinν + p̃2 cosν cosI, p3 = p̃2 sinI.
(2)

The angleν determines the nodal line, i.e.ν measures the angle from thex1 axis to the
intersection between the old(x1, x2) plane and the new(x̃1, x̃2) plane. Thus,I is the angle
between the two planes. The condition|N | < G ensures thatx × p is not already parallel
to thex3 axis, soν is well defined.

The Whittaker transformation is a (homogeneous) canonical transformation, i.e. the sym-
plectic structure remains the standard one. In the new co-ordinates our Hamilton function
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reads

Hε(x̃, p̃, ν,N)= 1

2
(p̃2

1 + p̃2
2) + ω2

2
(x̃2

1 + x̃2
2)

+ε

√
1 − N2

(x̃1p̃2 − x̃2p̃1)2

(
α

3

(
1 − N2

(x̃1p̃2 − x̃2p̃1)2

)
x̃3

2

+β

(
x̃2

1x̃2 + N2

(x̃1p̃2 − x̃2p̃1)2
x̃3

2

))
.

By constructionν is a cyclic variable, thus the conjugate momentumN acts as a (dis-
tinguished) parameter of the system. For a fixed valuea of N we have reduced to a
two-degree-of-freedom system. In particular, the flow of the isotropic harmonic oscilla-
tor becomesϕt (x̃, p̃, ν,N) = (x̃ cosωt + (1/ω)p̃ sinωt,−ωx̃ sinωt + p̃ cosωt, ν,N).

The Whittaker transformation is only defined on the (open and dense) set where|N | <
G. A global way to reduce the axial symmetry is to use a set of generators of the Pois-
son algebra of (smooth)�-invariant functions, cf. [11]. In the present situation a suitable
choice is

σ1 = z2
1 + z2

2, σ2 = z1z̄1 + z2z̄2 + z̄1z2 − z1z̄2, σ3 = z3, (3)

where

zj = ωxj + ipj , j = 1,2,3, (4)

see [12] for more details. These generators are constrained by the relationsP(σ) := σ1σ̄1−
(Reσ2)

2 + (Im σ2)
2 = 0 and Reσ2 ≥ 0. Eqs. (3) induce a Poisson bracket onC3 ∼= R6

which has twoCasimir elements, functions that commute with all other functions: the
relationP and the third componentN(σ) = (1/2ω)Im σ2 of the angular momentum. This
implies that our realisationP−1(0) of the reduced phase spaceT ∗

R
3/S1 is invariant under

every Hamiltonian system onC3, and that the level sets{N = a} are invariant subsets.
On these 4D subvarieties the Poisson bracket is non-degenerate, giving rise to a symplectic
structure.

We have again reduced to two degrees of freedom. The subset|N | = G which we had to
exclude for the Whittaker transformation gets reduced to

{σ ∈ C3|P(σ) = 0, σ3 Reσ2 = σ1σ̄3}

and contains in particular the plane{(0,0, σ3)|σ3 ∈ C}. This follows directly from (9),
using the definition (6a) and (6b). At that plane the reduced phase spaceP−1(0) is not
smooth, but has a cone-like singularity. Our Hamilton function gets reduced to

Hε(σ) = 1

2
Reσ2 + 1

2
σ3σ̄3 + ε

(
α

3ω3
(Reσ3)

3 + β

2ω3
(Reσ1 + Reσ2)Reσ3

)

and the flow of the isotropic harmonic oscillator becomesϕt (σ ) = (e−2iωtσ1, σ2,e−iωtσ3).
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2.2. The oscillator symmetry

The flowϕt of the unperturbed systemXH0 defines theS1-actionψ as

ψ : S1 × T ∗
R

3 → T ∗
R

3,

(�, (x, p)) �→ ϕ�/ω(x, p),

which we call theoscillator symmetry. Our perturbed Hamilton functionHε is not invariant
under this action, but we normalise it in Section 3 and the resulting normal form does have
this oscillator symmetry. Again we compare the two ways to incorporate this symmetry. In
fact, both the invariantsσj and the nodal-Lissajous variables we now obtain may be used
to perform the normalisation.

By construction the unperturbed system has become in Whittaker co-ordinates the planar
isotropic harmonic oscillator, parametrised by(ν,N). In particular, the oscillator symmetry
reads

ψ : S1 × (T ∗
R

2 × T ∗S1) → T ∗
R

2 × T ∗S1,

(�, (x̃, p̃, ν,N)) �→
((

(cos�t)I2
1

ω
(sin�t)I2

−ω(sin�t)I2 (cos�t)I2

)(
x̃

p̃

)
, ν,N

)
,

whereI2 =
(

1 0

0 1

)
denotes the identity. From Noether’s theorem, or by direct ver-

ification, one concludes that every oscillatory symmetric Hamiltonian system hasL =
(1/2ω)(p̃|p̃) + (ω/2)(x̃|x̃) as an integral of motion. In a second step we now use the
Lissajous transformation

L : {(x̃, p̃) ∈ T ∗
R

2|G < L} × T ∗S1 → T ∗
T

3,

(x̃1, x̃2, p̃1, p̃2, ν,N) �→ (�, g, ν, L,G,N)

introduced in [15]. Writing̃s = √
(L + G)/(2ω) andd̃ = √

(L − G)/(2ω), we have

x̃1 = s̃ cos(g + �) − d̃ cos(g − �), p̃1 = −ω(s̃ sin(g + �) + d̃ sin(g − �)),

x̃2 = s̃ sin(g + �) − d̃ sin(g − �), p̃2 = ω(s̃ cos(g + �) + d̃ cos(g − �)).
(5)

The angle� describes the position on an ellipse in configuration space, measured from the
semi-minor axis. This makes� the elliptic anomaly, see [15]. The other variables define the
ellipse, which is centred at the origin. The angleg gives the position of the semi-minor axis
reckoning from thẽx1 axis, i.e. from the nodal line. The eccentricity

ẽ = 2
√
s̃d̃

s̃ + d̃
=
√

2
√
L2 − G2

L + √
L2 − G2

of the ellipse determines its shape, while the size is encoded in the length

s̃ − d̃ =
√

1

ω
(L −

√
L2 − G2)
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of the semi-minor axis. The conditionG < L ensures that the ellipse does not degenerate
to a circle, thusg and� are well defined. Finallyν still represents the angle of the ascending
node of the orbital plane, the inclination of which is given by cosI = N/G.

The nodal-Lissajous transformationL ◦W is obtained explicitly combining the Eqs. (2)
and (5). Thus, the nodal-Lissajous variables are defined on

{(x, p) ∈ T ∗
R

3||N | < G < L}.
For completeness we give here other state functions that we use later:η = G/L, e2 = 1−η2,
c = N/G, s2 = 1 − c2 andµ = N/L. These state functions prove indispensable when
working with the normal formH̄ε of Hε in nodal-Lissajous variables in an efficient way.

The Hamilton function of the isotropic harmonic oscillator now readsH0 = ωL and
yields the equations of motion

�̇ = ω, ġ = 0, ν̇ = 0, L̇ = 0, Ġ = 0, Ṅ = 0.

Thus, the elliptic anomaly� is a linear function of time, describing the position of the
particle on the trajectory. The projection of this trajectory into configuration space is ex-
actly the ellipse fixed by(g, ν, L,G,N). In particular, invariants like the tensor(pjpk +
ω2xjxk)j,k=1,2,3 or the angular momentum vectorx × p can be expressed in terms of
(g, ν, L,G,N), see [20]. The nodal-Lissajous variables are action–angle variables of the
isotropic harmonic oscillator that are particularly well suited in that they immediately re-
flect the periodic character of the flow. In the terminology of Nehorošev [47] they are
generalised action–angle variables. Note, however, that these variables yield a 2:1 covering
because(�, g, ν, L,G,N) and(�−π, g+π, ν, L,G,N) represent the same point inT ∗

R
3,

see [15,20].
On the (first) reduced phase space, i.e. expressed in the invariantsσ1,σ2,σ3, the oscillator

symmetry reads

ψ : S1 × C3 → C
3,

(�, σ ) �→ (e−2i�σ1, σ2,e−i�σ3)

and its generator becomesL(σ) = (1/2ω)(Reσ2 +σ3σ̄3). Again we follow Cushman et al.
[12] in the choice of a set of generators of the Poisson algebra of (smooth)ψ-invariant
functions to reduce the symmetry. The complex-valued function

τ1 = σ1σ̄
2
3 (6a)

and the real-valued functions

τ2 = Reσ2, τ3 = σ3σ̄3, τ4 = Im σ2, τ5 = σ1σ̄1 (6b)

are constrained by the relationsτ1τ̄1 = τ2
3 τ5, τ3 ≥ 0. Since we are only interested in the

subset

{τ ∈ C× R4|P(τ) = 0},
we may useP(τ) = τ5 − τ2

2 + τ2
4 to eliminateτ5, see [12] for more details. Combining (3)

with (6a) and (6b) we thus have reduced the phase spaceT ∗
R

3 to

V = {τ ∈ C× R3|R(τ) = 0, τ3 ≥ 0},
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whereR(τ) = τ1τ̄1 − τ2
3 (τ

2
2 − τ2

4 ). Next toR there are two more Casimir elements of the
reduced Poisson bracket onC×R3. The third componentN(τ) = (1/2ω)τ4 of the angular
momentum is inherited from the first reduction, whileL(τ) = (1/2ω)(τ2 + τ3) is made a
Casimir element by the second reduction. In particularH0 = ωL defines the zero vector
field on the second reduced phase spaceV , the flow of the isotropic harmonic oscillator
having been completely reduced.

Fixing valuesa of N and b of L we obtain 2D subvarieties that are invariant under
every Hamiltonian system on the second reduced phase space. Eliminatingτ4 = 2ωa and
τ3 = 2ωb − τ2 these become

Va,b = {τ ∈ C× R||τ1| = √
Fa,b(τ2),2ω|a| ≤ τ2 ≤ 2ωb},

where

Fa,b(τ2) = (τ2 − 2ωb)2(τ2
2 − 4ω2a2);

the relationR has now turned intoRa,b(τ ) = (Reτ1)
2 + (Im τ1)

2 − Fa,b(τ2). For |a| < b

the twice reduced phase spaceVa,b is a topological sphere that has conical singularities at

Fig. 1. Different slices N−1(a) ∩ L−1(b) ∼= Va,b of the second reduced phase space
V = {τ ∈ C × R3|R(τ) = 0, τ3 ≥ 0}. For 0 < |a| < b these have the form of a turnip, whileV0,b

has a second singularity and looks like a lemon. On each slice the flow defined by the Hamilton functionH = G

is depicted, giving an impression of the local charts(γ, Γ ) defined below.
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τ = (0,2ωb) and (fora = 0) also atτ = (0,0). This givesVa,b the shape of a turnip if
a �= 0, andV0,b looks like a lemon, cf. Fig. 1. The Poisson structure onVa,b can be written
as the vector triple product,

{f, h} = 2ω(∇f × ∇h|∇Ra,b). (7)

Outside the singular points this gives rise to a symplectic structure onVa,b.
The points on the second reduced phase spaceV representS1-families of ellipses, which

get transformed into each other by the axialS1-action�. Whenever non-trivial rotations�ν
fix an ellipse — also preserving its orientation — this leads to a singular point onV . Indeed,
this is equivalent to the 2-torus action

ψ ◦ � : (S1 × S1) × T ∗
R

3 → T ∗
R

3,

((ν, �), z) �→ �ν(ψ�(z))

having a non-trivial isotropy group. In this way the equatorial circular ellipses get re-
duced to singular pointsV±b,b = {(0,2ωb)}, the rectilinear orbits in thex3 axis reduce
to the singular origin ofV0,b and equatorial (non-circular) ellipses with eccentricityẽ =√

2
√
b2 − a2/(b + √

b2 − a2) project into the singular point(0,2ωb) of Va,b, |a| < b.

This corresponds to the physical interpretation of the invariantsτ . The energy1
2τ2 of the

equatorial subsystem and the third componentN = (1/2ω)τ4 of the angular momentum
describe the geometry of the projection of the ellipse into the(x1, x2) plane. The vertical
subsystem has the energy1

2τ3, and the angle argτ1 determines the synchronisation of (the
S1-families of) the two subsystems.

2.3. Geometrical interpretation

The invariants(τ1, τ2, τ3, τ4) and the nodal-Lissajous variables(�, g, ν, L,G,N) are
intimately related. Let an axially and oscillatory symmetric HamiltonianH ∈ C∞(T ∗

R
3)

be given. By construction the expression in nodal-Lissajous variables does not depend on
ν and�. This makes the momentaN andL conjugate to these cyclic angles integrals of
motion. Correspondingly,H induces a Hamilton function onC×R3, again denoted byH .
The flow ofXH not only keeps the second reduced phase spaceV invariant, it also has
{N = a} ∩ {L = b} as invariant submanifolds. Both argumentations show that the valuesa

andb of N andL act as distinguished parameters of the system.
If |N | = G or G = L the anglesν and�, respectively, of the nodal-Lissajous variables

are not well defined. Correspondingly, the ramified 2-torus bundle

τ ◦ σ : T ∗
R

3 → C× R3

does not have a global section. In fact, the singular fibres are contained in{(x, p) ∈
T ∗
R

3||N | = G}. The defining equation reads Reτ1 = τ2(2ωb − τ2), and fora �= 0
the sole solution is the singular pointτ = (0,2ωb) of Va,b. In V0,b the equation may be
written asτ1 = |τ1|, yielding the whole upper arc in the plane Imτ1 = 0 which connects
the two singularities(0,0) and(0,2ωb) of the “lemon”V0,b. HereG = 0, hence these
points correspond to (S1-families of) rectilinear ellipses.
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Furthermore, the excluded subset{(x, p) ∈ T ∗
R

3||N | < G = L} gets reduced to
the regular pointsτ = (−(ω2/b2)(b2 − a2)2, (ω/b)(a2 + b2)) on the lower arc in the
intersection of the plane Imτ1 = 0 with the twice reduced phase spaceVa,b. These points
represent the (S1-families of) circular ellipses in a plane with inclination cosI = a/b.
However, the image of{(x, p) ∈ T ∗

R
3||N | < G} underτ ◦ σ is contractible, making it

topologically necessary to exclude one further point in every reduced phase spaceVa,b to
obtain action–angle variables, i.e. a chart ontoT3 × U , U ⊆ R3 open.

From Eqs. (2)–(6) the expression of the invariantsτ1, τ2, τ3, τ4 as functions of the
nodal-Lissajous variables is easily computed to be

Reτ1 = 2ω2
(

1 − N2

G2

)
(L2 − G2 + L

√
L2 − G2 cos 2g)

−ω2
(

1 − N2

G2

)2

(L +
√
L2 − G2 cos 2g)2,

Im τ1 = 2ω2
(

1 − N2

G2

)
G
√
L2 − G2 sin 2g,

τ2 = ω(L −
√
L2 − G2 cos 2g) + ω

N2

G2
(L +

√
L2 − G2 cos 2g),

τ3 = ω

(
1 − N2

G2

)
(L +

√
L2 − G2 cos 2g),

τ4 = 2ωN. (8)

Evidently, the anglesν and� do not enter, and Eqs. (8) can be solved to get

cos 2g = (τ3 − τ2)(τ2τ3 − Reτ1) + τ3τ
2
4

(τ2τ3 − Reτ1)

√
2Reτ1 + τ2

2 + τ2
3 − τ2

4

,

sin 2g =
Im τ1

√
τ2

4 + 2τ2τ3 − 2Reτ1

(τ2τ3 − Reτ1)

√
2Reτ1 + τ2

2 + τ2
3 − τ2

4

,

L= 1

2ω
(τ2 + τ3), G = 1

2ω

√
τ2

4 + 2τ2τ3 − 2Reτ1, N = 1

2ω
τ4. (9)

These equations are valid where the nodal-Lissajous variables are defined. The invariants
are constrained by the relationsR(τ) = 0, τ3 ≥ 0, in particular one may replace Reτ1 in

(9) by τ3

√
τ2

2 − τ2
4 cos(argτ1) and Imτ1 by τ3

√
τ2

2 − τ2
4 sin(argτ1).

Recall that the angleg gives the position of the semi-minor axis of the ellipse in config-
uration space, reckoning from the nodal line. In particularg andg + π determine the same
ellipse whenL, G andN are kept fixed. The reduction process is reflected by� measuring
the points on the ellipse andν making up for the wholeS1-family of ellipses. Eqs. (8) and
(9) show that the mapping

S1 × {(L,G,N) ∈ R3||N | < G < L} → V,

(g, L,G,N) �→ (τ1, τ2, τ3, τ4)
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is a chart that doubly covers the open and dense subset{τ ∈ C × R3|R(τ) = 0, τ3 ≥ 0,
|N | < G < L} of V .

Fixing the valuesa ofN andbofLwe are led to (doubly covering) symplectic co-ordinates
(g,G) of the twice reduced phase spaceVa,b. Eqs. (8) and (9) become

Reτ1 = 2ω2
(

1 − a2

G2

)
(b2 − G2 + b

√
b2 − G2 cos 2g)

−ω2
(

1 − a2

G2

)2

(b +
√
b2 − G2 cos 2g)2,

Im τ1 = 2ω2
(

1 − a2

G2

)√
b2 − G2G sin 2g,

τ2 = ω(b −
√
b2 − G2 cos 2g) + ω

a2

G2
(b +

√
b2 − G2 cos 2g)

and

cos 2g = 2ωb − 2τ2

Q
+ 4ω2a2(2ωb − τ2)

(τ2(2ωb − τ2) − Reτ1)Q
,

sin 2g = Im τ1

√
4ω2a2 + 2τ2(2ωb − τ2) − 2Reτ1

(τ2(2ωb − τ2) − Reτ1)Q
,

G= 1

2ω

√
4ω2a2 + 2τ2(2ωb − τ2) − 2Reτ1,

whereQ is an abbreviation for√
2Reτ1 + τ2

2 + (2ωb − τ2)2 − 4ω2a2 = 2ω
√
L2 − G2.

To obtain univalued co-ordinates, one may change toγ = 2g (andΓ = 1
2G to make sure

that dγ ∧ dΓ = dg ∧ dG remains the symplectic structure of the regular part ofVa,b).
This also allows to interpretγ andΓ as polar co-ordinates nearΓ = 1

2b whereγ is not
defined. The lower boundaryΓ = 1

2|a| corresponds to the singularity ofVa,b, and fora = 0
the whole arcτ1 = |τ1| is outside the domain of the chart(γ, Γ ). On the other hand, the
co-ordinates(g,G) may be thought of as a blow-up of the singularity atτ = (0,2ωb) if
a �= 0 (and|a| < b).

The second reduced phase spaceV is sliced into the subvarietiesN−1(a) ∩ L−1(b) ∼=
Va,b. These are surfaces of revolution that extend between 2ω|a| and 2ωb, shrinking to
a (singular) point for|a| = b. Correspondingly, the co-ordinates(γ, Γ ) take values in
S1×] 1

2|a|, 1
2b[. Fig. 1 shows how the disjoint unioṅ

⋃
Va,b fits together to formV , and

how (γ, Γ ), or (g,G), co-ordinise the differentVa,b. For a detailed study of the various
singularities ofV the reader is referred to [12].

To further illustrate the relation between the invariantsτ1,τ2,τ3,τ4 and the nodal-Lissajous
variables we have a closer look at the equation

|τ1| sin(argτ1) = 4ω2
(

1 − a2

4Γ 2

)√
b2 − 4Γ 2Γ sinγ. (10)
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In [20] the co-ordinates(γ, Γ ) are used as cylindrical co-ordinates on a smooth sphereS2.
This yields fora �= 0 a homeomorphismVa,b → S2 that is a diffeomorphism if the singular
point of the turnip and the south pole of the sphere are excluded. From (10) we conclude
that the topological circle{ argτ1 = 0, π} gets mapped to the great circle{γ = 0, π}. As
a → 0 this topological circle gets more and more distorted within its image great circle.
In the limit a = 0 the mappingV0,b → S2 is not longer bijective since the whole arc
{ argτ1 = 0} gets reduced to the south pole.

In particular, the “left-most points”(τ1, τ2, τ3, τ4) = (0,2ω|a|,2ω(b − |a|),2ω|a|) of
the turnips have co-ordinatesΓ = 1

2

√
2|a|(b − |a|), γ = 0. These points correspond to

(S1-families of) ellipses that project into equatorial circular orbits. Fora = 0 this is a
single rectilinear ellipse in thex3 axis (for everyb) which accounts for the singularity at
(τ1, τ2, τ3, τ4) = (0,0,2ωb,0).

3. Normalisation of the Hamilton function

We are given an axially symmetric perturbationHε of the isotropic harmonic oscilla-
tor H0 by a cubic potential. In the previous section we have seen howHε reduces to a
two-degrees-of-freedom system, and how a system that furthermore has the oscillator sym-
metry may be reduced to one degree of freedom. In this section we normaliseHε to obtain
this oscillator symmetry. The normalisation will be carried out by means of Lie transforma-
tions. The process of the normalisation is independent of the set of variables one chooses.
We both use the (generalised) action–angle variables and take directly advantage of the flow
being periodic, outstanding the advantages and disadvantages of both approaches.

3.1. Lie transformations

In general Lie transformations are used to deal with time-dependently perturbed differ-
ential systems, cf. [13,26]. However in this paper, as we treat autonomous Hamiltonian
systems, we describe these transformations in this context.

A Lie transformation is a near-identity contact transformation

ϕ : T ∗
R

3 × R+ → T ∗
R

3,

(x′, p′; ε) �→ (x, p)

such thatx(x′, p′; ε) andp(x′, p′; ε) are the solution of the initial value problem defined
by

dx

dε
= ∂Wε

∂p
,

dp

dε
= −∂Wε

∂x
,

and initial conditionsx(x′, p′; 0) = x′ andp(x′, p′; 0) = p′. Thus, the transformation is
the time-ε-flow of the Hamilton functionWε, and as such preserves the Poisson bracket
structure.

Deprit [13] introduced the formalism of Lie transformations in the context of a general
perturbation theory to deal with perturbed Hamiltonian systems. Therefore the perturbation
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technique by using a Lie transformation is usually known as the Lie–Deprit method. We
outline the procedure below.

Let Hε represent a Hamilton function which is developed in power series of the small
parameterε as

Hε(x, p) =
∑
n≥0

εn

n!
H 0

n (x, p). (11)

The Lie transformationϕε allows to expressHε in the new variablesx′ andp′, by making
use of the Hamilton function

Wε(x, p) =
∑
n≥0

εn

n!
Wn+1(x, p).

Note thatWε(x, p) is conserved under the transformation and thus, it is also expressed as
Wε(x

′, p′) with the same formal termsWn. For convenience one continues the coefficient
functions of (11) toHj

i , satisfying the following relation:

H
j
i = H

j−1
i+1 +

∑
0≤k≤i

(
i

k

)
{Hj−1

k ,Wi+1−k} (12)

for i ≥ 0 andj ≥ 1, see Fig. 2. Here{ , } denotes the Poisson bracket.
The transformed Hamilton function is denoted byH̄ε and reads

H̄ε(x
′, p′) =

∑
n≥0

εn

n!
Hn

0 (x
′, p′).

The recursion process is sketched by the so-called Lie triangle, see Fig. 2. In each ordern

of the process the diagonalH
j
i with i+ j = n is built starting withH 1

n−1 and finishing with

Hn−1
1 . Note thatHn

0 cannot be determined due to the fact thatWn is still unknown. Hence,
if LH0 : F → {F,H0} denotes the Lie operator acting on functionsF , then Eq. (12) yields
the partial differential equation

LH0(Wn) + Hn
0 = H̃ n

0 , (13)

whereH̃ n
0 collects all the terms known from the previous order. In this identity, called

thehomological equation, Wn andHn
0 must be determined according to the requirements

Fig. 2. The Lie triangle.
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(averaging over the time, simplification of some type of terms, etc.) of the Lie transformation
one performs.

3.2. The normalisation procedure

We consider a Hamilton functionHε(x, p) which admits an expansion in powers of the
small parameterε as in (11). In the following we state the concept of the normalisation.

A Lie transformation

ϕ : (x′, p′; ε) �→ (x, p)

is said to normalise the Hamilton functionHε(x, p) if the transformed Hamilton function

H̄ε(x
′, p′) = Hε(x(x

′, p′; ε), p(x′, p′; ε))
is normal (with respect toH0), that is, it verifies{H̄ε,H0} = 0, i.e.H̄ε is in the kernel of
LH0. ThenH̄ε is called the normal form series ofHε.

Now we have to take into account the semi-simple character ofH0. In other words, the
matrix corresponding to the linear differential equation associated toH0 is semi-simple. In
this situation, see for instance [44], the algebraF of functions containing the termsH 0

n is
a direct sum of two subspaces

F = ker(LH0|F) ⊕ im(LH0|F), (14)

where the kernel ker(LH0) is the set of functionsF such thatLH0(F ) = 0 and the image
im(LH0) is the set of functionsφ such that there exist functionsψ satisfyingLH0(ψ) = φ.
NormalisingHε means finding a Lie transformation that projectsHε onto an element̄Hε in
ker(LH0|F). It is a geometrical operation, the purpose of which is pushing a symmetry of
the Hamilton function of zeroth order through the whole Taylor series of the perturbation.
Thus, the normalisation (with respect to the isotropic harmonic oscillatorH0) will allow us
to apply the reduction techniques of Section 2.

In practice, the normalisation consists in calculating in each order of perturbation the
termsHn

0 of the normal form series together with their corresponding termsWn in the
generating functions, following the algorithm of the Lie transformation. As a rule, the
seriesWε andH̄ε are divergent. TruncatingWε at ordern, one can transform the Hamilton
functionHε into

Hε ◦ ϕε =
n∑

k=0

εk

k!
Hk

0 (x
′, p′) + higher order terms.

Truncating this expression at ordern yields the normal form of ordern. Concerning the
family (1), we will exclusively work with the normal form̄Hε of order 2.

3.3. Normalisation in nodal-Lissajous variables(�, g, ν, L,G,N)

In nodal-Lissajous variables, the process of the normalisation in three degrees of freedom
is completely analogous to the one described by Deprit and Elipe [16] in two degrees of
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freedom. Introducing one additional degree of freedom, using nodal-Lissajous variables,
adds no further complication, because the additional variables(ν,N) are also in the kernel
of the Lie derivative,LH0(F ) = {F,H0} = ω(∂F/∂�).

By means of a Lie transformation, when we implement a Lissajous normalisationΨ :
(�′, g′, ν′, L′,G′, N ′) �→ (�, g, ν, L,G,N), we have to deal with the homological equation
(13). Thus, taking

Hn
0 = (2π)−1

∫ 2π

0
H̃ n

0 d�

together with

Wn = ω−1
∫
(H̃ n

0 − Hn
0 )d�,

the normalisation is carried out straightforwardly.
Normalising in nodal-Lissajous variables means “removing the dependence on the vari-

able�” up to a certain order, obtaining an averaged orbit with respect to the elliptic anomaly.
The feature of the nodal-Lissajous variables when normalising is precisely that the physical
meaning of this process is well reflected, whereas in other variables it is not. The results
obtained have been widely checked withMathematica. Truncating after second-order
terms, the normal form ofHε yields

H̄ε = ωL + ε2L2

96ω4
(C0 + C2 cos 2g + C4 cos 4g), (15)

where

C0 = 8β2(−6+e2)+8β(2(β−3α) + e2(α − 7β))s2 + 5(α + β)(3β − α)(2 + e2)s4,

C2 = 20(α + β)es2(−2β + (3β − α)s2), C4 = 5(α + β)(3β − α)e2s4.

Primes have been dropped in order to simplify the notation. Recall that the state functions
e ands are given bye2 = 1 − (G2/L2) ands2 = 1 − (N2/G2).

3.4. Normalisation in complex variables(z1, z2, z3)

What we do here is to apply the algorithm of the normalisation in complex variables (4).
It turns out to be advantageous to complete thezj = ωxj + ipj by their complex conjugate
uj = ωxj − ipj , thereby defining a transformation of co-ordinates and momenta between
the setsT ∗

R
3 andCS= {(z, u) ∈ T ∗

C
3|u = z̄}, as

Υ : T ∗
R

3 → CS,

(x, p) �→ (z, u)

which is not singular anywhere inT ∗
R

3; its inverse is the transformation given by the
equations

x = z + u

2ω
, p = z − u

2i
.
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The transformationΥ induces the Poisson bracket{zk, uj } = −2ωiδkj, which is non-
standard. More importantly, the Lie derivativeLH0 of a functionF associated toH0, defined
through the Poisson bracket{F,H0}, becomes the diagonal differential operator

LH0 = −ωi

(
z1

∂

∂z1
− u1

∂

∂u1
+ z2

∂

∂z2
− u2

∂

∂u2
+ z3

∂

∂z3
− u3

∂

∂u3

)
,

because the unperturbed Hamilton function in the complex variables reads

H0 = 1
2(z1u1 + z2u2 + z3u3).

Yet, as the perturbation remains polynomial in the complex variables, for a given monomial
m = z

j

1z
k
2z

l
3u

r
1u

s
2u

t
3 (j, k, l, r, s andt being non-negative integers) its Lie derivative yields

LH0(m) = −ωi(j +k+ l− r− s− t)m. The kernel ofLH0 is the vector subspace generated
by the monomialsm such that their corresponding exponents verify the relation

j + k + l − r − s − t = 0. (16)

Hence, the normalisation for a potential written in the(z, u) is as follows. On the one hand
a termm of the perturbing potential which satisfies (16) does not contribute to the generator
and remains in the normalised potential. On the other hand ifm does not verify (16) its
contribution to the normalised Hamiltonian is zero and the term

im

ω(j + k + l − r − s − t)

is added to the generatorWε. The application of the normalisation in complex variables up
to order 2n yields that

Hε ◦ ϕε =
n∑

i=0

ε2i

(2i)!
H 2i

0 +O(ε2n+2),

whereH 0
0 = H0 is the Hamilton function of the isotropic harmonic oscillator. Each coeffi-

cient functionH 2i
0 , i = 1,2, . . . , n, is a homogeneous polynomial in the complex variables

(z, u) (as well as in the real variables(x, p)) of degree 2i + 2 and all the terms verify (16).
Note that odd coefficient functions are zero because{Hi

0, H0} = 0 implies thati is even.
Up to second order the normal form ofHε reads

H̄ε = 1

2
(z1u1 + z2u2 + z3u3) − ε2

48ω6
(5α2z2

3u
2
3 + αβ(12(z1u1 + z2u2)z3u3

−z2
3(u

2
1 + u2

2) − (z2
1 + z2

2)u
2
3) + β2(6z2

3(u
2
1 + u2

2) + 5z2
1u

2
1 + 5z2

2u
2
2

+8(z1u1 + z2u2)z3u3 + 6(z2
1 + z2

2)u
2
3 + 12z1u1z2u2 − z2

1u
2
2 − z2

2u
2
1)), (17)

where primes have been dropped. Note that this normal form still has to be expressed in the
invariants (6a) and (6b).

As expected the normalisation gives the same results in both sets of variables. However, if
one needs to reach a high order normalisation, the complex variables are a better choice. The
main reason is that an algebraic manipulator of general purpose (Mathematica, Maple,
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etc.) handles polynomials faster than expressions involving at the same time polynomials
and trigonometric terms, as it happens with the nodal-Lissajous variables. It turns out that
the performance of the complex variableszj can still be improved upon by working with
the complex invariantsσj .

3.5. Normalisation in invariants(σ1, σ2, σ3)

Here we proceed along the lines of the previous subsection and complete theσj of (3)
by σ4 := σ̄1, σ5 := σ̄2 andσ6 := σ̄3. Hence,

H0(σ ) = 1
4(σ2 + σ5) + 1

2σ3σ6,

and the Poisson structure becomes the one depicted in Table 1, cf. [12].
The important point is again that the Lie operatorLH0 is diagonal, indeed

LH0 = −ωi

(
2σ1

∂

∂σ1
+ σ3

∂

∂σ3
− 2σ4

∂

∂σ4
− σ6

∂

∂σ6

)

and thus maps a monomialm = σ
j

1 σ
k
2σ

l
3σ

r
4σ

s
5σ

t
6 to LH0(m) = −ωi(2j + l − 2r − t) m.

Recall from (3) thatσ1, σ2, σ4 and σ5 are of degree 2 in thezj , uj . Correspondingly,
we callm of degree 2j + 2k + l + 2r + 2s + t . The kernel ofLH0 is the vector sub-
space generated by the monomialsm such that their corresponding exponents verify the
relation

2j + l − 2r − t = 0. (18)

Hence, the normalisation for a potential written in theσj is as follows. On the one hand a
termm of the perturbing potential which satisfies (18) does not contribute to the generator
Wε and remains in the normalised potential. On the other hand ifm does not verify (18) its
contribution to the normalised Hamiltonian is zero and the term

im

ω(2j + l − 2r − t)

Table 1
The Poisson brackets of theσj ’s
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is added to the generator. The application of the normalisation in the invariantsσj up to
degree 2n yields that

Hε ◦ ϕε =
n∑

i=0

ε2i

(2i)!
H 2i

0 +O(ε2n+2),

whereH 0
0 = H0 is the Hamilton function of the isotropic harmonic oscillator. Each co-

efficient functionH 2i
0 , i = 1,2, . . . , n, is a polynomial (homogeneous of degree 2i + 2

if expressed in the variableszj , uj ). As expected, again odd coefficient functions vanish.
The algorithm now yields the normal form already expressed in the invariants, the passage
to theσj having occurred before the normalisation. Since the normalisation introduces the
oscillator symmetry and since theτj are delineated to express the normal form of an axially
symmetric Hamilton function, we may write the second-order normal formH̄ε in theτj as

H̄ε = 1

2
(τ2 + τ3) + ε2

48ω6
(αβ(τ1 + τ̄1 − 12τ2τ3) − 5α2τ2

3 − β2(6(τ1 + τ̄1)

+6τ2
2 + 8τ2τ3 − τ5)). (19)

Of course, (17) and (15) express this same function in thezj , uj variables and the nodal-
Lissajous variables, respectively. The important point is always that the Lie operatorLH0

is diagonal and, hence, the splitting (14) is immediate. However, the procedure in theσj
involves the computation of less partial derivatives than its version in thezj , uj . The reason
is the form adopted by the Lie operatorLH0 in both sets of variables. Hence, the best option
seems to be to perform the normalisation with the invariantsσj .

4. The one-degree-of-freedom problem

In this section we describe the flow of the averaged system on the twice reduced phase
spaceVa,b. In fact the problem defines a one-degree-of-freedom system because we have
reduced the normal form of the original system twice, as explained in Section 2. We give the
possible phase portraits according to 2 parameters, which are functions of the 4 parameters
of the problem, the external parametersα andβ and the fixed valuesa, b of N andL,
respectively. There are two possible ways of approaching the study of the dynamics of
this problem. One consists in setting up the differential equations corresponding toH̄ε and
discuss the existence and number of solutions of this system equated to zero. This gives the
equilibria after testing that they belong toVa,b. We refer the reader to [58] for an exposition
along these lines. An alternative approach is the one we follow here and uses geometrical
tools in order to calculate the equilibria and their bifurcations.

4.1. Parameter reduction

The Hamilton function (1) and its normal form (19) depend on the external parameters
α, β in a redundant way. Rather than puttingα =: cosφ, β =: sinφ as done in [45], we
scaleα away and useλ := (β/α) as sole parameter. In this way we lose the caseα = 0,
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but it turns out that for sufficiently large|λ| no further changes occur and “λ = ∞” can be
easily incorporated again. Recall thatε merely expresses the smallness of the perturbing
force field (or, equivalently, how close to the origin we consider the dynamics). Our final
results in Section 5 will concernε > 0 sufficiently small.

For fixed valuesa andb of N andL, respectively, we can eliminateτ3 = 2ωb − τ2,
τ4 = 2ωa andτ5 = τ2

2 − 4ω2a2. In this way the normal form (19) becomes dependent on
the distinguished parametersa andb and induces

H̄ a,b;λ
ε = ωb + ε2

48ω6
(−20ω2b2 − 4ω2λ2a2 + 2λ(1 − 6λ)Reτ1

+4ω(5 − 6λ − 4λ2)bτ2 − (5 − 12λ − 3λ2)τ2
2 )

on the twice reduced phase spaceVa,b. To further simplify we scale

τ1 �→ 4ω2b2τ1, τ2 �→ 2ωbτ2, a �→ ba, (20)

divide H̄ a,b;λ
ε by (ε2b2/12ω4), omit constant terms and rescale time. This shows that also

the distinguished parametersa, b are redundant and only their ratioµ = a/b is relevant for
the dynamics of the reduced system. The twice reduced phase space becomes in this way

Vµ = {τ ∈ C× [|µ|,1]|Rµ(τ) = 0}
with Rµ(τ) = (Reτ1)

2 + (Im τ1)
2 − (τ2 −1)2(τ2

2 −µ2). The Poisson bracket (7) turns into

{f, g} = (∇f × ∇g|∇Rµ)

and the Hamilton functionH̄ a,b;λ
ε leads to

Hλ(τ ) = 2λ(1 − 6λ)Reτ1 + 2(5 − 6λ − 4λ2)τ2 − (5 − 12λ − 3λ2)τ2
2 . (21)

Note that the dependence of (21) on the external parameterλ and the dependence of the
phase spaceVµ on µ makes the Hamiltonian system defined in this way a family that
depends on 2 parameters.

For an open and dense part of the parameter plane we expectHλ to be aMorse function
onVµ, i.e. having finitely many saddles and (local) extrema which are all non-degenerate.
These lead to saddles and centres of the phase flow, furthermore the singular points of
Vµ are always equilibria. To be more explicit, the orbits are the intersections of the level
sets{Hλ(τ ) = h} with Vµ in C × R. From this the phase portraits are easily obtained by
geometric considerations.

At parameter values where the Hamilton function fails to be a Morse function, the system
is subject to bifurcations. We remark here that the usual definition of a Morse functionF
requiresF to assume different values at its saddles and (local) extrema. However, there are
no dynamical consequences if the energy assumes the same value on two different centres,
or on a centre and a saddle. Therefore, we do not speak of a bifurcation in such cases. On
the other hand two saddles may become connected by heteroclinic orbits if they have the
same energy. We will see that this does not happen forHλ onVµ. The various bifurcation
lines (and points) are given in Fig. 3. Most bifurcations involve the equilibria at the singular
points; when passing through the curve C a centre–saddle (or Hamiltonian saddle–node)
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bifurcation occurs. In Fig. 3 we have also assembled sketches of the various phase portraits.
Indeed, these are governed by the occurring equilibria, and as we see in Section 4.2 all
equilibria occur in the meridian section{Im τ1 = 0} of Vµ. The fact thatVµ decreases to
a point as|µ| → 1 is not reflected in the illustrations of Fig. 3. We also remark that the
bifurcation diagram is symmetric with respect to theλ axis.

We stress that one has to be careful when interpreting the bifurcation diagram. The
parameterµ is distinguished with respect toλ in that only reparametrisations of the form

(λ, µ) �→ (λ̃(λ), µ̃(λ, µ))

are allowed to ensure that the newµ̃ can still be interpreted as a ratio of values of phase
space variables. Recall thatµ can simply be altered by a change of initial conditions, while
a change ofλ corresponds to a different perturbing force field.

This gives the parameter plane a fibred structure; rather than being a plain 2-parameter
family depending on(λ, µ), our one-degree-of-freedom systems are 1-parameter families
(depending onλ) of 1-parameter families of Hamiltonian systems, the latter depending on
the distinguished parameterµ. This affects the interpretation of bifurcations. What we are in-
terested in are those values ofλ for whichHλ defines a structurally stable 1-parameter family
onVµ. From Fig. 3 we infer immediately that this does not hold true whenλ takes one of the
six values in the set{−1,0, 1

2,1, 5
2,6}. It turns out that these are the only exceptional values.

Theorem 4.1. For all values ofλexcepting those in the set{−1,0, 1
2,1, 5

2,6} the 1-parameter
family of Hamiltonian systems defined byHλ onVµ is structurally stable.

The proof of this theorem is given in Sections 4.2–4.4. We first identify the occurring
equilibria. Then we study where these undergo bifurcations. Finally we show that these
bifurcations are versally unfolded by means of the distinguished parameterµ (unlessλ
takes one of the exceptional values).

4.2. Equilibria

The equilibria of the Hamiltonian system defined byHλ onVµ are those points where
∇Hλ is parallel to∇Rµ. Geometrically, this means that (withinR3) the level set{Hλ(τ ) =
h} is tangent to the phase spaceVµ. This is always the case at the singularities ofVµ.
The systems defined by (1) are reversible with respect top �→ −p, and this reflection is
preserved as Imτ1 �→ −Im τ1. NowHλ is even independent of the variable Imτ1 whence
the level sets and à fortiori their tangent planes contain the Imτ1 axis. AsVµ is a surface
of revolution, a tangent plane toVµ can only contain the Imτ1 axis in points where Imτ1
vanishes. Thus, all equilibria are confined to the meridian sectionVµ ∩ {Im τ1 = 0}. This
contour in the(Reτ1, τ2) plane is given by

Reτ1 = ±(τ2 − 1)
√
τ2

2 − µ2, |µ| ≤ τ2 ≤ 1 (22)

and the intersection{Hλ(τ ) = h} ∩ {Im τ1 = 0} is the parabola

Reτ1 = 1

2λ(1 − 6λ)
((5 − 12λ − 3λ2)τ2

2 − 2(5 − 6λ − 4λ2)τ2 + h). (23)
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It is geometrically clear that for each fixedλ andµ the “height” of this parabola can
always be adjusted in such a way that (22) and (23) touch. An explicit formula can be
obtained equating the derivatives of the right-hand sides of (22) and (23) with respect
to τ2. Recalling Imτ1 = 0, this yields the positions of the equilibria (as depicted in
Fig. 3).

Where the nodal-Lissajous variables are defined they provide an alternative way to
compute the equilibria. To simplify the equations one uses the state functionse, s and
η which allow for expressions without explicit square roots. We refer to [58] for more
details.

The casesλ = 0 andλ = 1
6 immediately appear to be special situations. Here the

level sets{Hλ(τ ) = h} are planes perpendicular to theτ2 axis. All orbits are equivariant
with respect to rotations about this axis and the sole equilibria occur atτ = (0, |µ|) and
τ = (0,1). These both have index+1.

We recall that in both these cases the original system (1) is integrable. But whileH1/6

defines a structurally stable family of flows onVµ, the flows defined byH0 onVµ are not
structurally stable. The reason is that in this latter case the equilibrium atτ = (0,1) is
degenerate for allµ ∈ [−1,1].

4.3. Bifurcations

We treat bifurcations of regular equilibria and of the equilibria in the singular points of
Vµ as different cases.

4.3.1. The equilibria atτ = (0,1)
The meridian section (22) defines at the singular pointτ = (0,1) the cone

Reτ1 = ±
√

1 − µ2(τ2 − 1), τ2 ≤ 1.

Thus there are three possibilities for the parabola (23) to pass throughτ = (0,1).
The parabola may pass “outside” the cone, which means that the modulus of the slope is

larger than
√

1 − µ2. In this case the equilibrium is dynamically stable and has index+1.
We say that the system has a centre at this singular point.

When the modulus of the slope is less than
√

1 − µ2, the parabola passes “inside” the
cone and the equilibrium is dynamically unstable. Although it has index 0, we say that a
saddle occurs at this singular point. Obviously both cases are structurally stable, i.e. the
dynamic properties nearτ = (0,1) are not altered by sufficiently small changes of the
system.

The third possibility is that the parabola passes with slope±
√

1 − µ2 through the sin-
gular point. Here a bifurcation occurs, under variation ofµ the centre atτ = (0,1)
turns into a saddle and a centre (at some regular point) splits off, or vice versa. Note
that (except forλ = ±1) the bifurcating equilibrium is still dynamically stable with in-
dex +1. The bifurcation lines concerning the equilibria atτ = (0,1) are defined by the
equation

λ2 − 6λ = ±
√

1 − µ2(λ − 6λ2),
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i.e. consist of theµ axis D and the curves B and F in Fig. 3 given by

µ2 = 35(λ2 − 1)

(1 − 6λ)2
.

In particular, we haveµ = ±1 for λ = 6. Here the single point ofV±1 bifurcates.

4.3.2. The equilibrium atτ = (0,0)
In this case (22) defines the cone Reτ1 = ±τ2, τ2 ≥ 0 and we distinguish again three

possibilities. However, the singularity atτ = (0,0) is not present forµ �= 0 and these three
possibilities entail different implications.

When the parabola passes “outside” the cone, having a slope of modulus larger than 1,
the system has a centre at this singular point. This is a structurally stable situation because
for sufficiently small|µ| �= 0 the parabola touches the pertinent meridian contour at some
regular pointτ̂ close to zero where the system has a centre as well.

When the slope lies in ]− 1,1[ the singular point is a saddle with index 0. Together with
the (un)stable manifold we may think of an “orbit with period∞”. For sufficiently small
|µ| �= 0 there are nearby orbits with very large period, but no equilibria. This yields the
bifurcation linesA = {(λ,0)|λ < −1}, E = {(λ,0)|1

2 < λ < 1} andG = {(λ,0)|λ > 5
2}

of Fig. 3. We discuss in Section 4.5 below why we expect the system to havemonodromy
for theseλ-values.

At the boundary pointsλ = −1, 1
2,1, 5

2 (but not at “λ = ∞”) the slope of the parabola
throughτ = (0,0) has modulus 1. Obviously these equilibria are not structurally stable.
Forλ = 1

2,
5
2 the bifurcating equilibrium is dynamically stable with index+1.

At λ = ±1 the situation is much more degenerate. Still keepingµ = 0, the parabola
throughτ = (0,0) coincides with the whole upper or lower arc of the meridian section,
respectively, yielding continua of degenerate equilibria. Recall that forλ = 1 the original
system (1) is integrable and thatλ = −1 is the 3D Hénon–Heiles case, cf. [21,22,58].
We discuss the behaviour at the boundary pointsλ = −1, 1

2,1, 5
2 to some more extent in

Section 4.5.

4.3.3. The equilibria at regular points
Where regular equilibria bifurcate the parabola (23) touches the meridian section (22) in

a degenerate way. As shown in [12], such a bifurcation must be a centre–saddle bifurcation.
Also, for fixedλ there can never be more than one centre–saddle bifurcation under variation
of µ ≥ 0. For such a bifurcation to occur it is necessary (though not sufficient) that the
extremum of the parabola (23) is taken at someτ̂2 between 0 and 1. In case this extremum
is a maximum, the bifurcation occurs on the upper arc of the meridian section. If it is a
minimum, the bifurcation occurs on the lower arc.

When|µ| varies through [0,1], the lemon becomes a turnip which shrinks to a point as
|µ| → 1, but always contains the singular pointτ = (0,1). This shows that the extremum
of the parabola (23) has in fact to be taken at someτ̂2 ∈ [ 1

2,1]. This happens forλ ∈
[−1,0] ∪ [1,6], see Fig. 4. The modulus of the curvature of the meridian section (22)
equals 1 forµ = 0 and increases in all pointsτ2 ∈ [|µ|,1] as |µ| approaches 1. For a
centre–saddle bifurcation to occur the curvatureκ = 1

2p
′′
λ (denoting by “′” the derivative

with respect toτ2) of the right-hand sidepλ of (23) has therefore to be≤ −1 forλ ∈ [−1,0]
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Fig. 4. The dotted function is the curvatureκ of the right-hand sidepλ of (23). The other function gives the position
τ̂2 of the extremum of the parabolapλ(τ2).

and≥ 1 forλ ∈ [1,6]. This proves that there are no centre–saddle bifurcations forλ ∈ [1,6]
and that there is for eachλ ∈ [−1,0] exactly oneµ̂ > 0 such thatHλ undergoes onVµ a
centre–saddle bifurcation asµ passes througĥµ or through−µ̂, see again Fig. 4.

To obtain an analytic expression for the curve C in Fig. 3 we consider, next topλ, the
right-hand sideqµ of (22). We are looking for pointsτ2 ∈ [|µ|,1] where the 2-jets of
both functions are equal. Since we can always chooseh to makepλ(τ2) = qµ(τ2) in some
prescribed pointτ2, we only have to equate the first and second derivatives. It is more
efficient to work with polynomials, so we define

f (τ2) := (τ2
2 − µ2)((p′

λ(τ2))
2 − (q ′

µ(τ2))
2)

and search for pointsτ2 ∈ [|µ|,1] where bothf and its derivative vanish. In fact, we are
not interested in the pointsτ2 themselves, but in the induced relation betweenλ andµ.
The proper tool to achieve this goal is the discriminant off , i.e. the resultant of the two
polynomialsf andf ′, see [9] for the definition and the properties of the resultant. The
relevant factor turns out to be

5(λ + 1)(λ − 1)(2λ − 1)3(2λ − 5)3 + 3(18576λ8 − 23136λ7 − 11992λ6

+21048λ5 + 14709λ4 − 34680λ3 + 21750λ2 − 6000λ + 625)µ2

+15(λ + 1)(λ − 1)(2λ − 1)(2λ − 5)(3λ − 1)2(9λ − 5)2µ4

−5(λ + 1)(λ − 1)(3λ − 1)3(9λ − 5)3µ6

and is of degree 3 inµ2. Hence, it can be solved, yieldingµ2 as a function ofλ on the
interval [−1,0], i.e. the curve C of Fig. 3.

The centre–saddle bifurcations all take place within the charts(γ, Γ ) provided by the
nodal-Lissajous variables. Thus, an alternative way to compute the curve C is to look for
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degenerate equilibria in these variables. To simplify the expressions one uses the state
functionse, s andη which allow to write the equations of motion without explicit square
roots. In this way Yanguas [58] obtains polynomialsP1

4 andP2
4 of degree 4, the roots of

which yield the equilibria on the upper and lower arc of (22), respectively. We remark that
this approach leads to simpler formulae. For instance, compared with the discriminant of
P1

4 the discriminant off has an “extra factor”.

Remark. For parameter values off the curve C all regular equilibria are non-degenerate.
For a centre the parabola (23) has to lie “outside” of the contour (22), and vice versa in
the neighbourhood of a saddle. Alternatively, one could compute the eigenvalues of the
linearisation of the equations of motion

d

dt
Reτ1 = {Reτ1,H

λ}, d

dt
Im τ1 = {Im τ1,H

λ}, d

dt
τ2 = {τ2,H

λ}.

Note that the constraintRµ(τ) = 0 forces one of these eigenvalues to vanish. The other
two eigenvalues characterise the linearised flow onVµ.

4.3.4. Global bifurcations
To prove that there are no global bifurcations we show that whenever there are two (or

more) saddles, these do not have the same energy. Now there is at most one saddle onVµ

except whenµ = 0 andλ ∈] − ∞,−1[∪] 5
2,∞[ where both singular points are saddles.

On the other hand

Hλ(0,0) = Hλ(0,1) ⇔ λ = ±1.

We have already remarked that the flows defined byH±1 onV0 are very degenerate.

4.4. Structurally stable families

To conclude the proof of Theorem 4.1 we have to show that the bifurcations of the
previous section are, for fixedλ /∈ {−1,0, 1

2,1, 5
2,6}, versally unfolded under variation

of µ. For the centre–saddle bifurcation this has been shown in [12]. Furthermore, it is
obvious that sufficiently small perturbations do not alter the qualitative behaviour of the
one-degree-of-freedom family as(λ, µ) passes throughA∪E∪G. Since there are no global
bifurcations, only the passage throughB ∪ F remains to be understood.

The equilibria atτ = (0,1) stand for (S1-families of) equatorial ellipses. These are
invariant under aπ -rotation about the vertical axis and it is exactly this non-trivial isotropy
which is responsible for the singularity. To resolve it, one has to pass to a 2:1 covering, e.g.
given by

Reτ1 = 1
4(u

2 − v2), Im τ1 = 1
2uv, τ2 = 1

2(w + 1) (24)

with the relationRµ(τ) = 0 becoming

16Rµ(u, v,w) = (u2 + v2)2 − (w − 1)2((w + 1)2 − 4µ2) = 0. (25)
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To obtain the correct time scale we replace (25) by the equivalent relation

Qµ(u, v,w) = 1
2(u

2 + v2) + 1
2(w − 1)

√
(w + 1)2 − 4µ2 = 0. (26)

When µ = 0 this relation defines the sphereu2 + v2 + w2 = 1 andu, v,−w are
the well-known Hopf variables describing the 1–1 resonance, cf. [10,11,15]. OnUµ :=
{(u, v,w) ∈ R3|Qµ(u, v,w) = 0,2|µ| − 1 ≤ w ≤ 1} the Hamilton function turns into

Hλ(u, v,w) = 1
2λ(1 − 6λ)(u2 − v2) + 5

2(1 − λ2)w − 1
4(5 − 12λ − 3λ2)w2,

where we omit constant terms. The Poisson bracket is given by the vector triple product
{f, g} = (∇f × ∇g|∇Qµ). By construction the system is equivariant with respect to the
π -rotation

(u, v,w) �→ (−u,−v,w),

i.e. the system on the 2:1 covering isZ2-symmetric. Passing back to the co-ordinates
(Reτ1, Im τ1, τ2) would exactly mean to reduce thisZ2-symmetry. We remark that for
µ �= 0 the nodal-Lissajous variables(g,G) provide co-ordinates on the 2:1 coveringUµ

near the desingularised point(u, v,w) = (0,0,1) that behave like cylindrical co-ordinates
on the sphere near the south pole.

We claim that a Hamiltonian flip (or period doubling) bifurcation takes place asµ passes
throughµ∗. Hereλ = λ∗ �= ±1,6 is fixed and(λ∗, µ∗) ∈ B ∪ F .

The classical scenario is that of a periodic orbit losing its stability, giving rise to a stable
periodic orbit of twice the period, cf. [43]. For the full normal form̄Hε in three degrees of
freedom this translates to an invariant 2-torus switching from normal ellipticity to normal
hyperbolicity, with a normally elliptic invariant 2-torus branching off that has one of its
internal frequencies halved.

For the presentZ2-symmetric one-degree-of-freedom system onUµ this means that the
equilibrium at(0,0,1) undergoes a Hamiltonian pitchfork bifurcation. The standard planar
model for such a bifurcation at the origin (asµ passes throughµ∗) is

1
2γ1y

2 + 1
24γ2x

4 + γ3(µ − µ∗)x2 (27)

with non-zero constantsγ1, γ2, γ3 ∈ R. The various possible signs yield four scenarios. If
the ratioγ2/γ1 is negative, the newly born pair of equilibria is hyperbolic, so we expect
γ2/γ1 > 0. Since the pair of elliptic equilibria ceases to exist for|µ| > |µ∗|, we expect
γ3/γ1 > 0 whenµ∗ > 0 andγ3/γ1 < 0 whenµ∗ < 0.

Our aim is to find local co-ordinates near(u, v,w) = (0,0,1) in which the domi-
nant terms ofHλ assume the simple form (27). Showing that the pertinent coefficients
are non-zero, and that the various signs are as described above then finishes the proof of
Theorem 4.1.

ProjectingUµ to the(u, v) plane yields a chart around(0,0,1) from which we start our
computations. Note that these are not symplectic co-ordinates as

{u, v} = w2 + w − 2µ2√
(w + 1)2 − 4µ2

. (28)
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However, this could be remedied by rescaling time and does not affect the values of
γ1, γ2, γ3. We use (26) to expressw = wµ(u, v) and obtain

Hλ,µ(u, v) := Hλ(u, v,wµ(u, v)). (29)

Because of the reversibility and theZ2-symmetry only the termsu2, v2, u4, u2v2, v4 in the
4-jet will have non-zero coefficients. Omitting constant terms, the 2-jet ofHλ,µ reads

H
2-jet
λ,µ (u, v) = λ(1 − 6λ)

u2 − v2

2
− λ(6 − λ)√

1 − µ2

u2 + v2

2
.

This shows that the origin is a parabolic equilibrium when(λ, µ) = (λ∗, µ∗) ∈ B ∪ F .
Indeed, forλ∗ ∈]1,6[ we have

H
2-jet
λ∗,µ∗(u, v) = λ∗(1 − 6λ∗)u2,

while for λ∗ > 6 orλ∗ < −1 we have

H
2-jet
λ∗,µ∗(u, v) = −λ∗(1 − 6λ∗)v2.

This gives the coefficientγ1 we look for,

γ1 = ±λ∗(1 − 6λ∗) = −λ∗(6 − λ∗)√
1 − µ2∗

and

γ3 = d

dµ

−λ∗(6 − λ∗)√
1 − µ2

∣∣∣∣∣
µ=µ∗

= −µ∗λ∗(6 − λ∗)√
1 − µ2∗

3

leads in all cases to(γ3/γ1) = (µ∗/(1 − µ2∗)) which bears the sign ofµ∗ as expected.
To prove that(γ2/γ1) > 0 we have to compute the pertinent term of order 4. The 4-jet

of Hλ,µ has the additional term

−5 − 5λ2 − µ2(5 − 12λ − 3λ2)

16(1 − µ2)2
(u2 + v2)2 (30)

and the coefficient turns for(λ, µ) = (λ∗, µ∗) ∈ B ∪ F into

γ2 = −15(1 − 6λ∗)2(1 − λ2∗)(2 − 5λ∗)
16(6 − λ∗)3

.

Hence,γ2 is negative forλ∗ ∈]1,6[ and positive whenλ∗ > 6 orλ∗ < −1, yielding in all
cases(γ2/γ1) > 0. This concludes the proof.

We end this section with a short survey of the various cases of structurally stable
1-parameter families of one-degree-of-freedom systems. The relevant information is con-
tained in the setΣλ of critical values of the mapping

(µ,Hλ) : Vµ → R
2 (31)

which is closely related to the energy–momentum mappingEM = (H̄ , L,N) : T ∗
R

3 →
R

3 of the full normal form in three degrees of freedom. Qualitative changes ofΣλ only occur
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Fig. 5. The setΣλ of critical values(µ, h) of (31) for the various structurally stable cases, withλ in the six
sets ]6,∞[∪] − ∞,−1[, ] − 1,0[, ]0, 1

2 [, ] 1
2 ,1[, ]1, 5

2 [ and ]52 ,6[. Note that the origin(µ, h) = (0,0) is always
contained inΣλ.

asλ passes through one of the exceptional values−1,0, 1
2,1, 5

2,6. For each structurally
stable case the set of critical values of(µ,Hλ) is given in Fig. 5.

Periodic orbits consist of regular points of(µ,Hλ), so all elements ofΣλ correspond
to equilibria. The lines inΣλ parametrise centres and saddles, in particular the straight
line parametrises the singular equilibria(0,1) in Vµ. The corners atµ = ±1 stand for
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the equilibria inV±1 = {(0,1)} while the singular equilibrium(0,0) in V0 gives rise to a
corner if it is a centre and to an isolated point if it is a saddle. Where a further curve touches
the straight line the equilibrium at(0,1) bifurcates, and the centre–saddle bifurcations are
represented by the two cusps in Fig. 5b. The double points in that figure just mean that there
two centres have the same energy, so this has no dynamical consequences. Since extrema
ofHλ are assumed in centres, it is straightforward to decide which of the lines parametrise
saddles. As already remarked the parameter value “λ = ∞” can easily be incorporated
again, in fact it is “obviously missing” in ]6,∞[∪] − ∞,−1[. We discuss in the next
section how isolated values of (31) give rise to monodromy.

4.5. The exceptional cases

If λ = λ∗ ∈ {−1,0, 1
2,1, 5

2,6} (fixed), then the dynamical behaviour of the 1-parameter
family of one-degree-of-freedom systems defined byHλ on Vµ may change under small
perturbations. This is easily proven considering again the setΣλ of critical values of (31),
see Fig. 6. Let us take the small perturbation defined by alteringλ a little bit. Depending
on whetherλ gets increased or decreased,Σλ is changed to one of the two bordering cases
depicted in Fig. 5. These two possible sets of critical values differ by themselves, so it is a
priori clear thatHλ∗ does not define a structurally stable family onVµ.

An interesting question is now whether all possible qualitative behaviours attainable by
small perturbations of the exceptional cases are already accounted for in the reduced nor-
malised family (21). This would imply that a further addition of (axially symmetric) quartic
potentials with sufficiently small coefficients would not alter the normalised dynamics, and
that the same holds true for higher order potentials if one restricts to a neighbourhood
sufficiently close to the origin.

4.5.1. The caseλ∗ = 6
The parabolap6 defined by (23) has its minimum atτ2 = 1. For nearby valuesλ the slope

of pλ in τ2 = 1 is non-zero and eventually a Hamiltonian flip bifurcation occurs when this
slope equals that ofqµ in τ2 = 1. This does not happen whenλ = 6, here it is the equilibrium
(0,1) in V±1 that bifurcates. Whenλ passes throughλ∗ = 6, the slope ofpλ in τ2 = 1
changes its sign. Consequently the family, parametrised byλ, of 1-parameter families of
one-degree-of-freedom systems, all of which are parametrised byµ, is structurally stable
whenλ passes through 6. Let us analyse this in the following paragraphs.

The perturbations we allow do have to satisfy some conditions. The Hamiltonian structure
should be respected and, thinking of perturbations of the second-order normal formH̄ε in
three degrees of freedom, the axial symmetry and the oscillator symmetry should both
remain valid. A typical example we have in mind are higher order normal forms. As a result
the perturbation can again be reduced to one degree of freedom with the same family of
phase spacesVµ and thus defines a small perturbationK ofH6. For instance, the perturbed
energy may explicitly depend on the distinguished parameterµ.

Let us first assume that the perturbation respects the reversible symmetry Imτ1 �→
−Im τ1 as well. This is the case for reversible perturbations in three degrees of freedom,
in particular for higher order normal forms. ThenK is even in Imτ1, i.e. Imτ1 only enters
squared. Therefore, the equilibria remain on the meridian sectionVµ ∩ {Im τ1 = 0} (since
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Fig. 6. The setΣλ∗ of critical values(µ, h) of (31) for the exceptional casesλ∗ = −1,0, 1
2 ,1, 5

2 ,6.

K is close toH6). Thus, we merely have to replacep6 by a functionf parametrising the
energy levels

{K = h} ∩ {Im τ1 = 0} = {Reτ1 = f (τ2)}.
The dynamical behaviour of the family of one-degree-of-freedom systems defined byK
onVµ is governed by the value off ′(1). In case this value is positive (zero, negative), the
dynamical behaviour is equivalent to that of the family defined byHλ for λ ∈] 5

2,6[ (λ = 6,
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λ > 6). Here we use thatp′′
6(0) = 5

6 > 0 and thatf is a small perturbation ofp6, whence
f behaves like a parabola nearτ2 = 1.

Let τ̂2(λ) denote the position of the extremum ofpλ. Since(d/dλ)τ̂2(6) = 6
175 > 0, the

family Hλ of families of one-degree-of-freedom systems defined onVµ versally unfolds
the bifurcation occurring atλ = 6.

In case the reversibility is destroyed one can use the implicit mapping theorem to show
that all equilibria lie on a curve throughτ = (0,1) (and also throughτ = (0,0) if µ = 0)
that is very close to the meridian section (22). The above argumentation still applies after
a small transformation onVµ that turns this curve into (22).

4.5.2. The caseλ∗ = 0
To prove that the passage throughλ = 0 is degenerate we perturb the energy by adding

δ · Reτ1 (δ small) to it. Note that in this way all existing symmetries are respected. For
δ �= 0 the energy levels are parabolic cylinders even whenλ = 0, and again it is the relative
position of the parabola within Imτ1 = 0 to the contour ofVµ that governs the dynamics. At
λ = 0 the extremum of the parabola is assumed inτ2 = 1, so we have the same dynamical
behaviour as atλ = 6: for all |µ| < 1 the equilibrium(0,1) is a saddle and(0,1) ∈ V±1
bifurcates. For non-zeroλ this induces Hamiltonian flip bifurcations with(0,1) becoming
a centre again. Thus, the effect of the perturbative termδ · Reτ1 is that the line D in Fig. 3
gets replaced by two curves of Hamiltonian flip bifurcations connecting(λ, µ) = (0,1)
and(0,−1). Sinceδ is small, the strip between these curves will be quite narrow.

Now the original family (1) defines an integrable system forλ = 0 where (1) is in fact
separable, consisting of a 2D harmonic oscillator and the 1D anharmonic oscillator

1
2p

2
3 + 1

2ω
2x2

3 + 1
3εx

3
3.

Consequently, the situation changes if one restricts to perturbations defined by higher order
normal forms. Let us denote byKλ such a perturbation ofHλ. The normal form procedure
affects only the(x3, p3) subsystem and higher order terms in the normal form become
functions in 1

2(p
2
3 + ω2x2

3) = τ2 − 1 (recall that we have scaled the total energyb of the
harmonic oscillator to 1). In particular, additional terms involvingτ1 vanish forλ = 0
where the energy levels remain planes perpendicular to theτ2 axis. As we have seen in
the caseλ = 1

6 this is not sufficient to force the dynamics to be degenerate. But since
the derivative of the energy with respect toτ2 (still) vanishes atτ2 = 1, the plane passing
throughτ = (0,1) is a degenerate “double plane” and the bifurcation that the system
defined byKλ onVµ undergoes asλ passes through 0 remains the same as for the system
defined byHλ; a centre and a saddle coalesce with the centre atτ = (0,1). We refer to
[54] for a detailed treatment of this bifurcation in the 2D Hénon–Heiles family along the
lines sketched above. An additional complication in the present 3D case is that the line of
centre–saddle bifurcations also terminates atλ = 0. But one readily checks that this is true
for the bifurcation diagram defined byKλ as well.

4.5.3. The casesλ∗ = 1
2,

5
2

Comparing the phase portraits for values of(λ, µ) near(1
2,0) and(5

2,0) with those in
the Lagrange top, see [11], we expect that a Hamiltonian Hopf bifurcation occurs. This is a
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bifurcation of, e.g. an equilibrium in two degrees of freedom, where two pairs of imaginary
eigenvalues meet and split off the imaginary axis, forming a quartet±γ ± iδ. In this way
a centre turns into a saddle as the parameter passes the bifurcation value. The bifurcating
equilibrium is in 1 to−1 resonance.

The equilibrium atτ = (0,0) stands for rectilinear “ellipses” where the whole energy
is concentrated in the(x3, p3) subsystem. These are invariant under the wholeS1-action
�, and already the reduction of this axial symmetry mapped the(x3, p3) subsystem to the
singular plane{(0,0, σ3)|σ3 ∈ C} of the first reduced phase space. Therefore, we have to
“unreduce” the axial symmetry if we want to study the bifurcations atτ = (0,0) on a
smooth phase space. In Section 4.4 it had been sufficient to pass to a 2:1 covering to achieve
the same goal atτ = (0,1).

It is preferable not to reconstruct the full system in three degrees of freedom, but only in
two degrees of freedom with the oscillator symmetry still reduced. In this way we are led to
CP

2. Indeed, this is what one obtains by fixing the valueb of L and reducing the oscillator
symmetry directly onT ∗

R
3, see [24,46,58] for more details. As this is a regular reduction

this does not lead to singularities,CP2 is a smooth manifold.
To perform the reconstruction, one has to attach anS1 to every point of the twice reduced

phase spacesVa,b with the exception of the singular pointτ = (0,0) of V0,b. In this
way periodic orbits give rise to invariant 2-tori, while from the regular equilibria and from
the equilibria atτ = (0,1) one reconstructs periodic orbits. The equilibriumτ = (0,0)
remains an equilibrium for everyb > 0. To obtainCP2 one has to take the union over
a ∈ [−b, b]. The reader may wish to have a second look at Fig. 1 to get an idea howCP

2 is
foliated by theseS1-bundles over lemon and turnips. Note that the nodal-Lissajous variables
provide local co-ordinates(g, ν,G,N) onCP2, but these are not defined in the equilibrium
“reconstructed” fromτ = (0,0). In particular one can no longer consider the valuea ofN as
a parameter of the system; the phase space variableN remains an integral of motion, though.

As we keep the oscillator symmetry reduced, the valueb of L remains a (distinguished)
parameter of the system. Hence, the second-order terms in the normal form (17) are still
given byωb, while a proper scaling makesb2 a common factor of the fourth-order terms.
Thus, for different valuesb of L one obtains equivalent flows onCP2, i.e. this parameter
influences the (reduced) dynamics only through a global scaling of the time.

To prove that indeed a Hamiltonian Hopf bifurcation occurs as the external parameterλ

passes through12 or 5
2 one has to check that the pertinent transversality conditions are met,

i.e. that certain higher order terms in the Taylor expansion of the Hamilton function about
the equilibrium do not vanish, cf. [11,42]. This lies beyond the scope of the present paper
(but see [31] for more details). Our conjecture is supported by the fact that, forλ near1

2 or
5
2, the setΣ = ⋃

Σλ of critical values of the energy–momentum mapping

EM = (H̄ λ,N) : CP2 → R
2

displays the typical structure of the Hamiltonian Hopf bifurcation of hyperbolic type, cf.
Figs. 5 and 6.

As shown in [18], the hyperbolic equilibria coming from a Hamiltonian Hopf bifurca-
tion always entail monodromy in the system, see also [11,48]. In the present situation the
hyperbolic equilibria correspond to the isolated critical value(0,0) of EM in Figs. 5a, d,
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f and 6f. The surrounding regular values stand for invariant 2-tori, and tracing a small loop
in (µ, h) space around the origin defines a diffeomorphism onT2. The system is said to
have monodromy if this diffeomorphism is not homotopic to the identity, see [11] for more
details. In particular the bundle of maximal tori (the base space of which is given by the
regular values in the image im(EM) of the energy–momentum mapping) is not a trivial
bundle. OnCP2 this is a 2-torus bundle, and in the full system onT ∗

R
3 this is a 3-torus

bundle. Hamiltonian Hopf bifurcations occurring atλ∗ = 1
2,

5
2 imply such diffeomorphisms

to be homotopic to

(
1 1

0 1

)
and




1 1 0

0 1 0

0 0 1


 ,

respectively.

4.5.4. The casesλ∗ = ±1
In these cases the parabola (23) coincides forµ = 0 with the contour (22) along the upper

or lower arc, respectively. This makes it obvious that small perturbations can change the
dynamical behaviour, and in fact forλ∗ = −1 already the higher order normal forms break
the degeneracy. This is the 3D Hénon–Heiles case, which has been proven in [58] to be
algebraically non-integrable (see also [21,22] for a detailed study of this case). According
to [19] the normal forms up to order 20 do not break the degeneracy atλ∗ = +1, and
we show below that this holds true for all higher order normal forms. As a consequence
the behaviour nearλ = +1 of the 1-parameter family of 1-parameter families defined by
Hλ on Vµ is not altered by higher order normal forms. Thus the two exceptional values
λ∗ = 0,1 for which (1) is integrable induce a degenerate behaviour shared by all normal
forms.

The degeneracy of the 3D Hénon–Heiles caseλ∗ = −1 is already broken by the
fourth-order normal form, and this raises the question whetherthat normal form is in-
sensitive to small perturbations or at least to the perturbations defined by the normal forms
of order 6 and higher. For instance, the results in [22,58] indicate that the curves B and C
of Fig. 3 cease to touch and intersect instead, leading to an additional open region with one
hyperbolic and three elliptic regular equilibria and a saddle atτ = (0,1). However, the
details of the refinement around(λ, µ) = (−1,0) of Fig. 3 imposed by the normal form of
order 4 are beyond the scope of the present paper.

4.5.5. Relation to the 2D Hénon–Heiles family
The degeneraciesλ∗ = ±1 manifest forµ = 0. Let us have a closer look at the dynamics

when the third component of the angular momentum vanishes. The points on the lemonV0
represent all polar orbits, i.e. motions confined to some plane containing thex3 axis. Here
we recover the 2D Hénon–Heiles family. Correspondingly, we have already seen that the
reduced phase spaceU0 of the 1–1 resonance is a 2:1 cover ofV0. The reason is that we
identified all ellipses that are mapped to each other under the axialS1-action. In particular,
those ellipses that differ by aπ -rotation are represented by the same point onV0, but by
two different points on the 2:1 coverU0.
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The studies [10,45] of the second-order normal form of the 2D Hénon–Heiles family
revealed atλ∗ = ±1 great circles of equilibria (which doubly cover the upper and lower arc
of (22), respectively). The parabolic equilibria occurring forλ∗ = 1

2,
5
2 undergo Hamiltonian

pitchfork bifurcations. These studies have been extended in [8] to the fourth-order normal
form of the 2D Hénon–Heiles family. Let us report on the results obtained for the passage
throughλ = 1, translating them to the lemonV0. We concentrate on sufficiently small
ε > 0, whence all equilibria fulfil Imτ1 = 0.

Starting with parameter valuesλ # −1, the flow onV0 is as indicated in Fig. 3 on the line
A. Both singular equilibria are saddles, and there are two regular centres. The (un)stable
manifold of the saddle atτ = (0,1) encircles the centre on the upper arc of the meridian
section Imτ1 = 0, while the (un)stable manifold of the saddle atτ = (0,0) encircles the
centre on the lower arc. Whenλ passes through a certain valueλ1 < −1, the saddle at
τ = (0,0) bifurcates: the stable and unstable manifold both emanate along the upper arc.
Forλ > λ1 the singular equilibrium atτ = (0,0) has turned into a centre, giving rise to a
regular saddle on the upper arc. The (un)stable manifold of the saddle atτ = (0,1) keeps
encircling the centre on the upper arc while the (un)stable manifolds of the regular saddle
encircle the singular centre and the regular centre on the lower arc.

As λ passes throughλ2 := −1, a global bifurcation occurs, the two saddles become
connected by heteroclinic orbits. Whenλ > −1 the (un)stable manifold of the singular
saddle encircles the regular centre on the lower arc, and the (un)stable manifolds of the
regular saddle encircle the singular centre and the regular centre on the upper arc. While
increasingλ the two regular equilibria on the upper arc approach each other and meet in
a transcritical bifurcationwhenλ = λ3. We will further comment on this in Section 5.3.
There is a secondconnection bifurcationwhenλ passes through a certain valueλ4 > λ3 and
for λ > λ4 the flow is equivalent to the one forλ ∈]λ1, λ2[. The final bifurcation occurs at
someλ5 ∈]λ4,0[ where the regular centre on the upper arc reaches the singular saddle and
vanishes, while the singular equilibrium atτ = (0,1) turns into a centre. Whenλ ∈]λ5,0[
the flow is as indicated in Fig. 3. Both singular equilibria are centres, there is a regular
saddle on the upper arc and a regular centre on the lower arc.

Hence, the simple reason for the degenerate second-order normal formH−1 is that a
parabolic cylinder cannot touch the lemonV0 at more than four isolated points. Passing
to the double coverU0, the five equilibria of the fourth-order normal form onV0 give rise
to the familiar eight equilibria of the reduced normalised 2D Hénon–Heiles system. The
bifurcation valuesλ1, λ3, λ4, λ5 are functions ofε and tend to−1 asε → 0. Cotter [8]
allowsε to be large and details a spectacular bifurcation diagram where the higher order
terms start dominating the lower order terms in the fourth-order normal form. We remark
that the bifurcation diagram in [22], which was obtained using nodal-Lissajous variables,
has to be completed by the segment betweenE0 andE4 where the two saddles are connected
by heteroclinic orbits.

On this basis one may speculate on the refinement of the bifurcation diagram around
(λ∗, µ∗) = (−1,0), see Fig. 3, if one passes to the fourth-order normal form. The curves
B and C will intersect, forming a new region which includes the point(−1,0). This region
contains two lines (or one line passing twice through theλ axis) of connection bifurca-
tions, one of which passes exactly through(−1,0). It is not yet clear how to continue the
transcritical bifurcation. The line A ends where C intersects theλ axis. Thus, asλ passes
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through that point, the singular equilibrium atτ = (0,0) turns from a saddle to a centre
and two curves of centre–saddle bifurcations emanate. We remark that this is typical for a
Hamiltonian Hopf bifurcation of elliptic type, cf. [42].

We end this section showing that the degeneracy of the system at(λ∗, µ∗) = (1,0)
persists through all orders of the normal form. This may be done in two degrees of freedom,
e.g. putting(x2, p2) = (0,0) whenceµ = 0. As noted in [2] the caseλ∗ = 1 of the 2D
Hénon–Heiles family is separable; the rotation

x1 = ξ1 − ξ2√
2

, x3 = ξ1 + ξ2√
2

, p1 = η1 − η2√
2

, p3 = η1 + η2√
2

turns (1) at(x2, p2) = (0,0) into the sum

Hε(ξ, η) = 1
2(η

2
1 + η2

2) + 1
2ω

2(ξ2
1 + ξ2

2 ) + 1
3

√
2ε(ξ3

1 + ξ3
2 ) (32)

of two uncoupled 1D anharmonic oscillators. Following [19] we note that the Hopf variables
u, v,w on the 2:1 coverU0 = {(u, v,w) ∈ R2|u2 + v2 + w2 = 1} of the lemonV0 are
expressed inξ, η as

u= 1

4ω
(η2

1 − η2
2 + ω2(ξ2

1 − ξ2
2 )), v = 1

2
(ξ1η2 − ξ2η1),

w = 1

2ω
(η1η2 + ω2ξ1ξ2).

For higher order normal forms it is not longer possible to scale the valueb of L = (1/ω)H0
away, so we now incorporate it again writing

u2 + v2 + w2 = b2

4
, b = 1

2ω
(η2

1 + η2
2 + ω2(ξ2

1 + ξ2
2 )).

As the normal forms of the anharmonic oscillator1
2η

2 + 1
2ω

2ξ2 + 1
3

√
2εξ3 are functions

in 1
2(η

2 + ω2ξ2), the normal forms of (32) only depend onb andu. Since it is possible
to pass toV0 by means of (24), every normal form is in fact a function inb andu2. As a
consequence the meridianu = 0 of U0 consists of equilibria. The 2:1 covering (24) maps
this meridian to the lower arc Imτ1 = 0, Reτ1 ≤ 0 of V0.

Remark. In 1-parameter families of Hamiltonian systems that are integrable at a certain
parameter value one often encounters a circle of equilibria. In [7] this is termed aBirkhoff
bifurcationand conditions are studied where this is a generic phenomenon. In the present
situation we encounter the further degeneracy that the circle of equilibria always coincides
with the meridianu = 0 onU0. Therefore, it projects onV0 only to the lower arc and not
to a whole circle of equilibria as well.

5. Implications for the original system

In the previous section we described the dynamical behaviour of the various one-degree-
of-freedom systems defined by the normal form, their dependence on the distinguished pa-
rametersa, band where these families change their behaviour as the external parametersα, β
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are varied. To obtain information on the “original flow”, defined by (1), we use that (in ap-
propriate co-ordinates, given by the normalisation procedure)Hε is anε4-small perturbation
of H̄ε. For fixed ratioβ/α /∈ {−1,0, 1

2,1, 5
2,6} the familyH̄ a,b

ε of one-degree-of-freedom
systems is insensitive to small perturbations. To use this we have to reconstruct the dy-
namics ofH̄ε on a phase space whereHε is defined as well, i.e. to two or three degrees of
freedom. It is preferable to carry out the perturbation analysis in two degrees of freedom.
This allows for strong results because 2-tori become periodic orbits and thus accessible
to the implicit mapping theorem, while those maximal tori that survive, parametrised by a
Cantor set, divide the energy shells, leading to results on (dynamical) stability. In Section
5.4 the dynamics ofHε is reconstructed to three degrees of freedom.

5.1. Reconstruction to two degrees of freedom

Our first goal is to reconstruct the dynamics ofXH̄ε
on {σ ∈ C3|P(σ) = 0,Reσ2 ≥

0}. To this end we have to attach anS1 to every point of the twice reduced phase space
Va,b. Where the nodal-Lissajous variables are defined, i.e. when|N | < G < L, this
S1 is parametrised by the angle�. In this way the periodic orbits ofX

H̄
a,b
ε

give rise to
invariant 2-tori, and the equilibria lead to periodic orbits ofXH̄ε

. Thus, the 3D invariant

subvarietiesN−1(a) ∩ L−1(b) of P−1(0) become ramified 2-torus bundles. The regular
fibres form families of 2-torus which are separated by the stable and unstable manifolds
of hyperbolic periodic orbits (or, occasionally, of parabolic periodic orbits) and shrink
down to elliptic periodic orbits withσ �= 0. The situation near the periodic orbitσ(t) =
(σ1(t),2ω(b + ia),0) (with |σ1(t)| = 2ω

√
b2 − a2) of XH̄ε

is more involved, reflecting
the 2–1 resonance. Asa → ±b this periodic orbit shrinks to an equilibrium, here the whole
“ramified torus bundle”{σ ∈ C3|P(σ) = 0, L(σ ) = b,N(σ) = εb}, ε = ±1, b ≥ 0
consists of this single point.

We also have to understand how the invariant level sets fit together to form the (first re-
duced) phase space{σ ∈ C3|P(σ) = 0,Reσ2 ≥ 0}. We can collect the relevant information
in one picture, the setΣ of critical values of

(H̄ε, N,L) : {σ ∈ C3|P(σ) = 0,Reσ2 ≥ 0} → R
3.

Note that the lift of this mapping toT ∗
R

3 is the energy–momentum mapping ofH̄ε on
T ∗
R

3. Here we have suppressed the dependence ofN on the external parametersα, β in
the notation. The critical values are symmetric with respect to the reflectiona �→ −a. For
a fixed valueb of L the sliceΣb of critical values is depicted in Figs. 5 and 6, depending on
the ratioλ = β/α. The scaling (20) shows that the whole setΣ of critical values is a cone
overΣb, distances in thea-direction increase linearly withb as does the minimal energy
onΣb, while the maximal energy onΣb behaves likeb + εb2. In particular also a level set
H̄ε = h of Σ is diffeomorphic to the depictedb-slice.

5.2. The perturbation analysis

Our aim is to understand the dynamics of the perturbation (1) of the isotropic harmonic
oscillator. To this end we considerHε as a perturbation of its normal form̄Hε. Being now
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in two degrees of freedom, the latter becomes sensitive to small perturbations, e.g. ceasing
to be integrable. However, the main features of the flow ofXH̄ε

are persistent and thus in
particular present in the flow ofXHε as well.

First we use that the set{(0,0, σ3)|σ3 ∈ C} of singularities ofP−1(0) is necessarily
XHε -invariant. The intersections with the energy levels{Hε = h} correspond to the solutions
of the equations of motion

σ̇1 = 0, σ̇2 = 0, σ̇3 = −ωiσ3 − εαi

4ω2
(σ3 + σ̄3)

2 (33)

which essentially describe 1D anharmonic oscillations around the origin.
We now turn to the regular subset{σ ∈ C3|P(σ) = 0,Reσ2 > 0}. Theorem 3.1 of [12]

yields the inequality

‖Hε ◦ ϕε − H̄ε‖A(h) ≤ Γ (h) · ε4

for sufficiently smallε. Hereϕε is the normalising transformation,‖ · ‖A(h) denotes the
supremum norm on the unionA(h) of the energy shells{H = h′} with h′ ≤ h, andΓ (h)

is a constant that only depends onh (and not onε).
We look for persistence of the dynamics ofXH̄ε

on the energy shells. To apply the implicit
mapping theorem to the persistence of elliptic and hyperbolic periodic orbits we need
estimates|Hε ◦ ϕε − H̄ε| < cε2 on some neighbourhood, with a constantc independent of
ε. Such estimates are true forε2 < c/Γ (h). The stable and unstable manifolds of hyperbolic
periodic orbits will no longer coincide, but are expected to split.

In what concerns occurring parabolic periodic orbits these are, forλ �= ±1, all involved
in (periodic) centre–saddle bifurcations or Hamiltonian flip bifurcations that are versally
unfolded by the distinguished parametera. As shown in [43] the same estimate|Hε ◦ ϕε −
H̄ε| < cε2, with a possibly smaller constantc, yields the persistence of these bifurcations.

The persistence of most invariant 2-tori follows from [3,5]. The crucial point is the
asymptotic behaviour of the frequency mapping asε → 0. With respect to suitably chosen
actions(L, I ) the frequency vector is of the form

DH̄ε(L, I) =
(
ω

0

)
+ O(ε2).

To ensure the persistence of a large Cantor set of 2-tori on each energy shell we need that
the determinant

det

(
D2H̄ε DH̄ε

DH̄ε 0

)
= −ω2∂

2H̄ε

∂I2
+ O(ε4) (34)

is bounded from below byε2κ, with someκ �= 0. To show that(d/d(ε2))(∂2H̄ε/∂I
2) is

non-zero atε = 0, we remark that the reduced systemX
H̄

a,b
ε

on Va,b depends onε only

through a global multiplication byε2. Furthermore, the frequency∂H̄ε/∂I is an analytic
function, so it suffices to show that this function is not constant. In case the axially reduced
normal formH̄ε has hyperbolic periodic orbits, the frequency∂H̄ε/∂I converges to zero
upon approaching a separatrix. Where there are no hyperbolic periodic orbits, we use that
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Fig. 7. The roots of (35). The line passing left ofλ = 1
2 is not a straight line, but has its unique left-most point on

theλ-axis.

the frequency∂H̄ε/∂I varies upon approaching an elliptic periodic orbit reconstructed from
τ = (0,1). To this end we show below that the second Birkhoff coefficient of(u, v,w) =
(0,0,1) on the double coverUµ of Vµ does not vanish. Both argumentations show that
∂H̄ε/∂I is not constant. Extracting some neighbourhood of the isolated zeros of∂2H̄ε/∂I

2

we get the necessary lower boundε2κ of the determinant (34).
Applying the normalisation procedure of Section 3 near an elliptic equilibrium of a

one-degree-of-freedom system, one obtains suited symplectic co-ordinates(p, q) in which
the Hamilton function reads

n∑
k=0

bk(p
2 + q2)k + higher order terms.

The scalarbk in this Birkhoff polynomial is thekth Birkhoff coefficient, cf. [4]. Note that
bk can be computed from the 2k-jet of the Hamilton function in the elliptic equilibrium.

Starting our computation from (29), we have to take into account that(u, v) are not
symplectic co-ordinates, but have Poisson bracket (28). A straightforward way to obtain
b2(λ, µ) is to normalise the vector field (instead of normalising the Hamilton function).
The relevant factor ofb2(λ, µ) is

6λ(6 − λ)(1 − 6λ)2 + 2(6 − λ)2(5 − 12λ − 3λ2)

+(1 − µ2)(1 − 6λ)2(5 − 12λ − 3λ2) (35)

and vanishes for(λ, µ) ∈ R × [−1,1] only on the lines depicted in Fig. 7. Note that the
line passing right toλ = 5

2 is irrelevant as the periodic orbit is hyperbolic for these values
of (λ, µ).

We focus onλ = λ∗ ∈]0,1[ as there are 1-parameter families of hyperbolic periodic
orbits for the other values ofλ. Our two-degrees-of-freedom systems are parametrised
by the valuea of N . The elliptic periodic orbits reconstructed fromτ = (0,1) form a
1-parameter family parametrised byb. Thus, toa �= 0 we may always findb > 0 such that
(λ, µ) = (λ∗, (a/b)) is not a root of (35). Whenλ∗ = 0.413. . . anda = 0 we cannot
avoid that (35) vanishes. To prove that(∂H̄ε/∂I) �= const. in this case, we computed the
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second Birkhoff coefficient of(u, v,w) = (0,0,−1) on the double coverU0 of V0, which
is non-zero.

Alternatively, one could use the nodal-Lissajous variables and put (15) in Birkhoff normal
form aroundG = |a|. Indeed,(g,G) doubly coverVµ (for µ �= 0) and provide “symplectic
polar co-ordinates” around the regularised point(u, v,w) = (0,0,1) onUµ, i.e. the local
co-ordinates(x, y) defined by

x =
√

2(G − |a|) sing, y =
√

2(G − |a|) cosg

satisfy {x, y} = 1. A linear symplectic change(x, y) �→ (q, p) puts the quadratic part
of H̄ε into normal formb1(p

2 + q2). Since{q, p} = 1 one can normalise the Hamilton
function itself to obtainb2. While the concrete expression obtained this way may differ
from (35), the set of(λ, µ)where “the” second Birkhoff coefficient vanishes has an intrinsic
meaning and does not depend on the co-ordinates used to calculate it. It turns out that the
expressions derived from (29) are less involved, but starting from (15) one can apply standard
routines, i.e. it is not necessary to write special programs when doing the computations by
machine.

Since we perform the perturbation analysis in two degrees of freedom, the energy shells
are 3D and are divided by the 2D invariant tori. This leads to global (dynamical) stability
results whenever the second Birkhoff coefficient is non-zero. Excluding a small strip around
the left three lines of Fig. 7, the elliptic periodic orbits reconstructed fromτ = (0,1) are
density points of the surrounding families of persistent invariant 2-tori.

To compute the second Birkhoff coefficients of the regular centres of the reduced system
X
H̄

a,b
ε

onVa,b we use the local co-ordinates(γ, Γ ). We remark that these are not defined

on the upper arc of the lemon and in the pointsΓ = 1
2b (the latter points are equilibria

exactly for the 3D Hénon–Heiles case). The expressions of the second Birkhoff coefficients
become very large and we have checked numerically that they do not vanish. Hence, these
elliptic periodic orbits are dynamically stable. For the elliptic periodic orbits in the singular
set{(0,0, σ3)|σ3 ∈ C} this holds true as well since they constitute the limit asa → 0 of
regular elliptic periodic orbits.

This applies mutatis mutandis to the centres ofH̄ε atσ = (0, |a| + ia,0), a ∈ R. Here
the energy takes the absolute valueb = |a| of the angular momentum, and since the axial
symmetry is still reduced, these equatorial circular orbits correspond to equilibria on the
first reduced phase space{σ ∈ C3|P(σ) = 0, Reσ2 ≥ 0}.

5.3. Periodic orbits

From [46] we know that the full three-degrees-of-freedom systemXHε has (at least) three
families of periodic solutions emanating from the central equilibrium in 1–1–1 resonance.
These are the vertical oscillations (33) and the horizontal circular orbits which reduce to
equilibria σ̂ in two degrees of freedom.

Let us directly compute the equilibriâσ on the first reduced phase space to which
the centresσ = (0, |a| + ia,0) of H̄ε are perturbed to. Fora �= 0 the co-ordinates
(Reσ1, Im σ1,Reσ3, Im σ3) provide a global chart of the invariant manifold{N = a}.
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The symplectic structure is given by

{Reσ1, Im σ1} = 4ω
√

4ω2a2 + (Reσ1)2 + (Im σ1)2, {Reσ3, Im σ3} = ω,

{σ1, σ3} = 0

and the equations of motion obtained fromHε(σ1, σ3) are

d

dt
Reσ1 = 2ω Im σ1 + 2βε

ω2
Im σ1Reσ3,

d

dt
Im σ1 = −2ωReσ1 − 2βε

ω2
(Reσ1 +

√
4ω2a2 + (Reσ1)2 + (Im σ1)2)Reσ3,

d

dt
Reσ3 = ωIm σ3,

d

dt
Im σ3 = −ωReσ3 − αε

ω2
(Reσ3)

2 − βε

2ω2
(Reσ1 +

√
4ω2a2+(Reσ1)2+(Im σ1)2).

The equilibria(σ̂1, σ̂3) are given by

Im σ̂1 = 0, Im σ̂3 = 0, Reσ̂3 = ωReσ̂1

4a2βε
(Reσ̂1 −

√
4ω2a2 + (Reσ̂1)2),

(36a)

where Rêσ1 is the unique solution near zero of

Reσ̂1 = 2(Reσ̂3)
2
(
1 + αε

ω3
Reσ̂3

)
. (36b)

As β → 0 these expressions tend toσ̂1 = 0, σ̂3 = 0. According to Lyapunov’s centre
theorem, see [1], there originates a 1-parameter family of periodic orbits to each normal
frequency of (36a,b) for which the other frequency is not an integer multiple of that fre-
quency. Note that the two frequencies have an integer ratio if and only if the centre (36a,b)
is in 2–1 resonance. In the separable caseβ = 0 this happens for all non-zero values ofa.

There are further centres in 2–1 resonance. Linearising the equations of motion around
(36a,b) yields a characteristic polynomialχ4 + pω2χ2 − qω4 with rootsχ2± = −1

2pω
2 ±

1
2ω

2
√
p2 + 4q and the centre is in 2–1 resonance whenχ2− = 4χ2+. Here the coefficientsp

andq depend onω, a, α, β, ε through 4ω2a2, βε/ω3 andβ/α. Again we writeλ = (β/α).
Then the above equation readsa = ±A(λ) with

A(λ) = 10ω5(17− 32λ)(1 − λ)(6 − λ)
√

4 − 33λ + 54λ2

ε2λ(4 − 93λ + 64λ2)5/2
(37)

which we only define for

λ ∈] 1
128(93+

√
7625),6[, (38)

cf. Fig. 8. Indeed, to obtain (37) we had to get rid of several square roots, leading to spurious
solutions. The limit limλ→6A(λ) = 0 reflects that the centres(σ̂1, σ̂3) = (0,0)of the normal
form H̄ε are in 2–1 resonance exactly whenλ = 6 orλ = 0.
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Fig. 8. The curvesa = ±A(λ) for ω = 1
2 andε = 10−2.

Recall thatε measures how close we are to the origin (in three degrees of freedom),
i.e. how valid the information provided by the normal form̄Hε is. The expression (37) is
derived fromHε and therefore meaningful for allε. Note that the 2–1 resonant centres have
energies 2ωb = 2ωA(λ). Hence, even for very smallε we obtain a large energy whenλ
approaches the left boundary of (38). This defines a smaller interval ]λ∗,6[ of λ-values for
which there is a 2–1 resonant centre in the region of validity of the normal formH̄ε. To
study the dynamics near the 2–1 resonant centres whenλ < λ∗ one should not work with
H̄ε, but normaliseHε with respect to the 2–1 resonant centres.

There are further rectilinear solutions next to (33). To compute these we make the ansatz

σ̃ = ((γ + iωγ̇ )2d, (γ 2 + ω2γ̇ 2)d, (γ + iωγ̇ )c)

whenced ≥ 0 (because one of the relations constraining (3) is Reσ2 ≥ 0). Ford = 0 this is
the vertical rectilinear solution (33), while ford > 0 this corresponds to a wholeS1-family
of rectilinear solutions with “directions” tanθ = (c/

√
d). A necessary condition for̃σ to

solve the equations of motion is then

ω2εγ 3cd(αc2 + βd − 2βc2) = 0

and ford �= 0 the functionγ = γ (t) is a solution of

γ̈ = −ω2γ − 2εβcγ 2.

These solutions satisfy

Reσ̃2 = 2ωb
2λ − 1

3λ − 1

(whereb = L(σ̃ ) is time-dependent) and exist for allλ /∈]0, 1
2]. As λ ↘ 1

2 they turn
into (33). We remark that these rectilinear solutions coincide with the rectilinear solutions
τ2 = (2λ − 1)/(3λ − 1) of the normal form, cf. (20).

This has implications for the transcritical bifurcation in the fourth-order normal form of
the 2D Hénon–Heiles family we encountered in Section 4.5. Indeed, one would generically
expect a transcritical bifurcation to break up into two centre–saddle bifurcations. However,
this would lead to a small interval ofλ-values with no equilibria on the upper arc. Thus, the
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existence of rectilinear solutions of (1) forces the transcritical bifurcation to persist through
all orders of the normal form of the 2D Hénon–Heiles family.

Directly solving the equations of motion allows us again to study these periodic orbits
outside the range of validity of any normal form. Forβ = 0 the equatorial subsystem
decouples and has rectilinear harmonic oscillations of all energies. The vertical oscillations
(33) form a family that extends between the origin and the (un)stable manifold of the
equilibrium σ = (0,0, (−ω3/εα)). The family of rectilinear oscillations with direction
θ �= 0, π is bounded by the (un)stable manifold of

σ =
(

ω6

2β2ε2

(
1 − α

2β

)
,

ω6

2β2ε2

(
1 − α

2β

)
,− ω3

2βε

)
.

Note that this latter equilibrium corresponds to a whole circle of equilibria in three degrees
of freedom.

5.4. Reconstruction of the full system

We finally return to three degrees of freedom and reconstruct the dynamics of the full
systemXHε onT ∗

R
3. With the exception of{(0,0, σ3)|σ3 ∈ C}, every point of the reduced

phase space{σ ∈ C3|P(σ) = 0,Reσ2 ≥ 0} gets anS1 attached. Where the Whittaker
transformation (2) is defined, i.e. whenN �= ±G, thisS1 is parametrised by the angleν.
The centres (36a,b) thereby turn into horizontal circular periodic orbits. Elliptic, hyperbolic
and parabolic periodic orbits inP−1(0) become invariant 2-tori with the same normal
behaviour. From invariant 2-tori with quasi-periodic motion we get invariant 3-tori that do
not foliate into periodic orbits, but may be resonant. We collect below what we found out
about the family (1) at non-exceptional ratiosλ = (β/α) of the external parametersα, β in
Λ1 :=]−1,0[,Λ2 :=]0, 1

2[, Λ3 :=] 1
2,1[,Λ4 :=]1, 5

2[orΛ5 :=] 5
2,6[∪]6,∞[∪]−∞,−1[.

Whenα = 0 the behaviour of (1) is the same as forλ ∈ Λ5.

Theorem 5.1. Consider the Hamilton function(1) on T ∗
R

3. For sufficiently smallε the
corresponding flow has the following properties.

A measure-theoretically large part of the phase space is filled by3D Cantor families
of invariant 3-tori. On each energy shell the measure of their complement goes to zero
as ε → 0. The motion on these3-tori is quasi-periodic with two or three independent
frequencies. The Cantor families of invariant3-tori shrink down to 2-parameter families of
normally elliptic2-tori. The horizontal circular periodic orbits reconstructed from(36a,b)
are elliptic. The origin and occurring elliptic periodic orbits and normally elliptic invariant
2-tori are stable in the sense of Lyapunov.

For λ ∈ Λ1 the stable and unstable manifolds of a 2-parameter family of normally hy-
perbolic invariant2-tori separate the three Cantor families of invariant3-tori. The periodic
orbits restricted to the(x3, p3) subsystem are elliptic. The two families of normally elliptic
invariant2-tori that originate from these meet the family of normally hyperbolic2-tori and
vanish in (quasi-)periodic centre–saddle bifurcations.

Whenλ ∈ Λ2 there are no normally hyperbolic invariant2-tori. One of the 2-parameter
families of normally elliptic invariant2-tori originating from a family of horizontal circular
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periodic orbits extends to the other family of horizontal circular periodic orbits, while the
other 2-parameter families of normally elliptic2-tori shrink down to the family of periodic
orbits restricted to the(x3, p3) subsystem which are elliptic as well. The Cantor family of
invariant3-tori extends between the families of normally elliptic2-tori.

The situation forλ ∈ Λ3 is similar to that ofλ ∈ Λ2 except that the periodic orbits
restricted to the(x3, p3) subsystem are now hyperbolic. Within the invariant submanifold
N = 0 their stable and unstable manifolds separate two Cantor families of invariant3-tori
which shrink down to the two families of normally elliptic2-tori.

For λ ∈ Λ4 there are two Cantor families of invariant3-tori, which are separated by
the stable and unstable manifolds of a 2-parameter family of normally hyperbolic invariant
2-tori. These undergo (quasi-)periodic Hamiltonian flip bifurcations and become normally
elliptic, shrinking down to the horizontal circular periodic orbits. The second family of
normally elliptic2-tori originating from the latter extend to the periodic orbits restricted
to the(x3, p3) subsystem which are elliptic as well.

The situation forλ ∈ Λ5 is similar to that ofλ ∈ Λ4 except that the periodic orbits
restricted to the(x3, p3) subsystem are now hyperbolic. Within the invariant subman-
ifold N = 0 there are three Cantor families of invariant3-tori. Two of these shrink
down to the normally elliptic2-tori, and one Cantor family extends between the sta-
ble/unstable manifolds of the hyperbolic periodic orbits and the normally hyperbolic in-
variant2-tori.

For λ ∈ Λ1 the normally hyperbolic invariant2-tori within {N = 0} consist of rectilinear
solutions. In caseλ ∈ Λ3∪Λ4∪Λ5 this holds true for the normally elliptic invariant2-tori
within {N = 0} with minimal energy.

We end with a discussion of the exceptional values−1,0, 1
2,1, 5

2,6 of the ratioλ = β/α.
Here not only the behaviour of (1) for such a fixed valueλ is of interest, but also how the
behaviour changes asλ is varied and passes through one of these values.

Theorem 5.2. Consider the Hamilton function(1) onT ∗
R

3. Sufficiently close to the origin
there is a critical interval]λ∗,6[ of ratiosλ = β/α for which the situation is similar to that
of λ ∈ Λ5 except for the following.

The horizontal circular periodic orbits reconstructed from(36a,b),which are parametrised
by the valuea ofN , have a normal behaviour in2–1resonance fora = ±A(λ). Asa passes
through these two values, the (quasi-)periodic Hamiltonian flip bifurcation approaches the
almost circular equatorial periodic orbits, reaches them when|a| = A(λ), and withdraws
again after the passage through±A(λ).

For the normal formH̄ε of order 2 the periodic orbit restricted to the(x3, p3) subsystem
changes its behaviour whenα = 2β or 5α = 2β. This implies that there are critical ratios
λ∗ andλ∗ of (β/α) close to1

2 and5
2 where the vertical oscillations (33) bifurcate. In Section

5.3 we have seen that in factλ∗ = 1
2, and the results in [8] suggest thatλ∗ = 5

2 as well.
We conjecture that a (periodic) Hamiltonian Hopf bifurcation of hyperbolic type occurs as
(β/α) passes through these exceptional values. Note thatτ4 only enters squared in (19),
throughτ5 = τ2

2 −τ2
4 . Correspondingly, there is a fourfold zero eigenvalue at the bifurcation.

We refer to [31] for further details.
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In the exceptional casesα = β andβ = 0 the Hamiltonian system defined by (1) is
integrable. We have seen in Section 4.5 that this leads to degenerate normal forms. Asβ

passes through 0 a degenerate bifurcation takes place in the normal form. ForN = 0, i.e.
for the 2D Hénon–Heiles family, it has been shown in [32] that this degenerate bifurcation
occurs in the original system as well. We expect that the same techniques allow for this
same conclusion in the family (1).

Forα = β the flow defined by the normal form is very degenerate, having a 3-parameter
family of invariant 2-tori. Note that this case separates the quite different dynamical be-
haviours of(β/α) ∈ Λ3 and(β/α) ∈ Λ4.

The caseα = −β is the 3D Hénon–Heiles system and has been studied in [21,22,58]. Here
the degeneracy of the second-order normal form is broken by the fourth-order normal form.
To understand the changes in the behaviour of the system defined by (1) as(β/α) varies near
λ = −1 it would be instructive to study the fourth-order normal form for a range of parameter
values aroundα = −β. For instance, we expect connection bifurcations as in [8] to occur.

As remarked in Section 1 there is one more case,α = 6β, where (1) defines an integrable
system. Hence, the Cantor family of invariant 3-tori becomes a smooth 3-parameter fam-
ily. But there are no effects of the integrability on invariant 2-tori or periodic orbits. The
second-order normal form (19) is independent ofτ1 if α = 6β. As shown in [19] the higher
order normal forms break this symmetry.

6. Conclusions

In the present paper we studied the 3D Hénon–Heiles family (1) with sufficiently small
ε. For most values ofλ = (β/α) we could describe the phase flow, which is governed by
the normal form of order 2. In condensed form the pertinent information is contained in the
setΣ of singular values of the energy–momentum mapping. For the six generic casesΣ is
depicted in Fig. 5, see also Fig. 3.

Furthermore we laid the foundations for further study of the behaviour asλ varies near
the exceptional values−1,0, 1

2,1, 5
2,6 which separate the generic cases. For these special

values the setΣ of singular values of the energy–momentum mapping is given in Fig. 6.
We conjecture that Hamiltonian Hopf bifurcations take place at the values1

2,
5
2 of λ. We

did not address the monodromy in the normal form as it will be a consequence of occurring
Hamiltonian Hopf bifurcations.

The normalisation was performed in various forms. It turned out that the variables (3) per-
formed best. However, this may be conceptually more involved since the Poisson structure,
given in Table 1, is non-standard.

The symmetry reduction by means of invariants seems to be the proper tool. They provide
a global description of the reduced phase space. The nodal-Lissajous variables allow for
an intuitive understanding of the fibresS1 × S1. Where they are defined they trivialise the
bundleT ∗

R
3.

While the local co-ordinates(γ, Γ ) on the reduced phase space, which are derived from
the nodal-Lissajous variables, favour a description in terms of the “plane of motion” of
the unperturbed oscillator, the invariantsτ1, τ2 favour a description in terms of “equatorial
versus vertical”. In this way one has two complementary interpretations of the points on the
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reduced phase space. Fora �= 0 there is a singularity atΓ = 1
2|a| which can be regularised

by passing to a 2:1 cover of the reduced phase space. The nodal-Lissajous variablesg and
G are polar-like co-ordinates around the “desingularised” point.

In principle all computations can be done in nodal-Lissajous variables as well, except
on the upper arcG = 0 of the lemona = 0. Here (1) reduces (fixing the angleν) to the
2D Hénon–Heiles family and one may use the Lissajous variables of [15]. In some cases
this even leads to simpler formulae. However, in this way one misses geometric insight
concerning the dynamical behaviour close toG = 0.

The adequate use of a symbolic manipulator has been essential to achieve some con-
clusions along the paper; for example, to carry out the normal form computations and to
determine the stability of periodic orbits and invariant 2-torus.

We encountered centre–saddle and Hamiltonian flip bifurcations. The former occur at
regular points of the twice reduced phase space and had already been dealt with in [12]. In a
Hamiltonian flip bifurcation of the normal form the singular pointτ = (0,1) of the twice re-
duced phase spaceVµ changes its normal behaviour. To avoid the technicalities of singularity
theory on non-smooth phase spaces, we regularised that point by passing to a 2:1 coverUµ of
Vµ. In this way the Hamiltonian flip bifurcation turned into a Hamiltonian pitchfork bifurca-
tion. We remark that the pertinent transversality conditions,γi �= 0 in (27), have immediate
geometric interpretations concerning the relative positions (withinR

3) ofVµ and the level set
{Hλ = h}.

Asλpasses through12,
5
2 the singular pointτ = (0,0)bifurcates and the relative positions

of V0 and{Hλ = h} fulfill these same geometric transversality conditions. This is used in
[31] to prove that indeed a Hamiltonian Hopf bifurcation takes place.

It would be helpful to have a ready-to-apply theory of deformations and unfoldings on
singular spaces. For a first step in this direction see [53], and see [39] for the theoretical
groundwork that seems necessary for further progress.

In Section 5.3 of [24] the Hamilton function

Kε = H0 + εxyz+ ε2

2ω2

(
x4 + 23

9
x2y2 + y4 + z4

)

is introduced as an example of a perturbation ofH0 that is not axially symmetric, but has an
axially symmetric normal formK̄ε of order 2. AddingKε − K̄ε to (1) we obtain a family of
Hamiltonian systems that arenotaxially symmetric, but have the same (axially symmetric)
normal form of order 2 (17) as (1). In particular, all results obtained in Section 4 remain
valid.

However, the perturbation analysis of Section 5.2 does not apply any more. Instead, the
perturbation analysis has to be carried out in three degrees of freedom, with KAM-like
arguments replacing the use of the implicit mapping theorem. As an intermediate step, one
could study onCP2 how the normal form of order 4 breaks the axial symmetry and only
then look at the full dynamics in three degrees of freedom.

While this particular exampleHε + Kε − K̄ε is a bit constructed, this shows how the
understanding of axially symmetric perturbations may help to analyse the whole unfolding
of the 1–1–1 resonance.
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